[Sur l'équation cohomologique pour les échanges d'intervalles]
We exhibit an explicit full measure class of minimal interval exchange maps T for which the cohomological equation Ψ−Ψ∘T=Φ has a bounded solution Ψ provided that the datum Φ belongs to a finite codimension subspace of the space of functions having on each interval a derivative of bounded variation.
The class of interval exchange maps is characterized in terms of a diophantine condition of “Roth type” imposed to an acceleration of the Rauzy–Veech–Zorich continued fraction expansion associated to T.
On présente une classe explicite d'échanges d'intervalles T, de mesure pleine, pour laquelle l'équation cohomologique Ψ−Ψ∘T=Φ admet une solution bornée Ψ, à condition que la donnée Φ appartienne à un sous-espace de codimension finie de l'espace des fonctions dont la dérivée sur chaque intervalle est de variation bornée.
Cette classe est définie par une condition diophantienne « de type Roth » exprimé dans une variante du développement en fraction continue de Rauzy–Veech–Zorich associé à T.
Accepté le :
Publié le :
Stefano Marmi 1, 2 ; Pierre Moussa 3 ; Jean-Christophe Yoccoz 4
@article{CRMATH_2003__336_11_941_0, author = {Stefano Marmi and Pierre Moussa and Jean-Christophe Yoccoz}, title = {On the cohomological equation for interval exchange maps}, journal = {Comptes Rendus. Math\'ematique}, pages = {941--948}, publisher = {Elsevier}, volume = {336}, number = {11}, year = {2003}, doi = {10.1016/S1631-073X(03)00222-X}, language = {en}, }
TY - JOUR AU - Stefano Marmi AU - Pierre Moussa AU - Jean-Christophe Yoccoz TI - On the cohomological equation for interval exchange maps JO - Comptes Rendus. Mathématique PY - 2003 SP - 941 EP - 948 VL - 336 IS - 11 PB - Elsevier DO - 10.1016/S1631-073X(03)00222-X LA - en ID - CRMATH_2003__336_11_941_0 ER -
Stefano Marmi; Pierre Moussa; Jean-Christophe Yoccoz. On the cohomological equation for interval exchange maps. Comptes Rendus. Mathématique, Volume 336 (2003) no. 11, pp. 941-948. doi : 10.1016/S1631-073X(03)00222-X. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00222-X/
[1] Solutions of the cohomological equation for area-preserving flows on compact surfaces of higher genus, Ann. of Math., Volume 146 (1997), pp. 295-344
[2] Topological dynamics, Amer. Math. Soc. Collog. Publ., Volume 36 (1955)
[3] Interval exchange transformations, Math. Z., Volume 141 (1975), pp. 25-31
[4] Non-ergodic interval exchange transformations, Israel J. Math., Volume 26 (1977), pp. 188-196
[5] A “minimal”, non-uniquely ergodic interval exchange transformation, Math. Z., Volume 148 (1976), pp. 101-105
[6] Interval exchange transformations and measured foliations, Ann. of Math., Volume 115 (1982), pp. 169-200
[7] Échanges d'intervalles et transformations induites, Acta Arit. (1979), pp. 315-328
[8] Interval exchange transformations, J. Anal. Math., Volume 33 (1978), pp. 222-272
[9] Gauss measures for transformations on the space of interval exchange maps, Ann. of Math., Volume 115 (1982), pp. 201-242
[10] Finite Gauss measure on the space of interval exchange transformations. Lyapunov exponents, Ann. Inst. Fourier, Volume 46 (1996) no. 2, pp. 325-370
[11] Deviation for interval exchange transformations, Ergodic Theory Dynamical Systems, Volume 17 (1997), pp. 1477-1499
- Sobolev regularity of solutions of the cohomological equation, Ergodic Theory and Dynamical Systems, Volume 41 (2021) no. 3, pp. 685-789 | DOI:10.1017/etds.2019.108 | Zbl:1515.37034
- Decoding Rauzy induction: an answer to Bufetov's general question, Bulletin de la Société Mathématique de France, Volume 145 (2017) no. 4, pp. 603-621 | DOI:10.24033/bsmf.2748 | Zbl:1385.37053
- The
-areas and the commutator length, International Journal of Mathematics, Volume 24 (2013) no. 7, p. 13 (Id/No 1350057) | DOI:10.1142/s0129167x13500572 | Zbl:1276.53082 - On the Lyapunov Exponents of the Kontsevich–Zorich Cocycle, Volume 1 (2006), p. 549 | DOI:10.1016/s1874-575x(06)80033-0
- Continued Fraction Algorithms for Interval Exchange Maps: an Introduction, Frontiers in Number Theory, Physics, and Geometry I (2006), p. 401 | DOI:10.1007/978-3-540-31347-2_12
- A divergent Teichmüller geodesic with uniquely ergodic, Israel Journal of Mathematics, Volume 152 (2006), pp. 1-15 | DOI:10.1007/bf02771972 | Zbl:1122.37027
- The cohomological equation for Roth-type interval exchange maps, Journal of the American Mathematical Society, Volume 18 (2005) no. 4, pp. 823-872 | DOI:10.1090/s0894-0347-05-00490-x | Zbl:1112.37002
- Slowly divergent geodesics in moduli space, Conformal Geometry and Dynamics, Volume 8 (2004), pp. 167-189 | DOI:10.1090/s1088-4173-04-00113-4 | Zbl:1067.37036
Cité par 8 documents. Sources : Crossref, zbMATH
Commentaires - Politique