[Propriété de la diagonale pour les produits symétriques d'une courbe lisse]
Let C be an irreducible smooth projective curve defined over an algebraically closed field. We prove that the symmetric product
Soit C une courbe irréductible, lisse, définie sur un corps algébriquement clos. Nous montrons que le produit symétrique
Accepté le :
Publié le :
Indranil Biswas 1 ; Sanjay Kumar Singh 2
@article{CRMATH_2015__353_5_445_0, author = {Indranil Biswas and Sanjay Kumar Singh}, title = {Diagonal property of the symmetric product of a smooth curve}, journal = {Comptes Rendus. Math\'ematique}, pages = {445--448}, publisher = {Elsevier}, volume = {353}, number = {5}, year = {2015}, doi = {10.1016/j.crma.2015.02.007}, language = {en}, }
Indranil Biswas; Sanjay Kumar Singh. Diagonal property of the symmetric product of a smooth curve. Comptes Rendus. Mathématique, Volume 353 (2015) no. 5, pp. 445-448. doi : 10.1016/j.crma.2015.02.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.02.007/
[1] On the
[2] Gromov invariants for holomorphic maps from Riemann surfaces to Grassmannians, J. Amer. Math. Soc., Volume 9 (1996), pp. 529-571
[3] On the Abel–Jacobi map for divisors of higher rank on a curve, Math. Ann., Volume 299 (1994), pp. 641-672
[4] Moduli of vortices and Grassmann manifolds, Commun. Math. Phys., Volume 320 (2013), pp. 1-20
[5] The diagonal property for abelian varieties, Curves and Abelian Varieties, Contemporary Mathematics, vol. 465, American Mathematical Society, Providence, RI, USA, 2008, pp. 45-50
[6] Techniques de construction et théorèmes d'existence en géométrie algébrique, IV. Les schémas de Hilbert. IV, Séminaire Bourbaki, vol. 6, Société mathématique de France, Paris, 1995, pp. 249-276 (Exp. No. 221)
[7] Construction of Hilbert and Quot schemes, Fundamental Algebraic Geometry, Mathematical Surveys and Monographs, vol. 123, American Mathematical Society, Providence, RI, USA, 2005, pp. 105-137
[8] Diagonal subschemes and vector bundles, Pure Appl. Math. Q., Volume 4 (2008), pp. 1233-1278
Cité par Sources :
☆ The first named author is supported by the J.C. Bose Fellowship. The second named author is supported by IMPAN Postdoctoral Research Fellowship.
Commentaires - Politique