Comptes Rendus
Équations aux dérivées partielles
A note on hypocoercivity for kinetic equations with heavy-tailed equilibrium
[Une note sur l’hypocoercivité pour les équations cinétiques avec équilibres à queue lourde]
Comptes Rendus. Mathématique, Volume 358 (2020) no. 3, pp. 333-340.

In this paper we are interested in the large time behavior of linear kinetic equations with heavy-tailed local equilibria. Our main contribution concerns the kinetic Lévy–Fokker–Planck equation, for which we adapt hypocoercivity techniques in order to show that solutions converge exponentially fast to the global equilibrium. Compared to the classical kinetic Fokker–Planck equation, the issues here concern the lack of symmetry of the non-local Lévy–Fokker–Planck operator and the understanding of its regularization properties. As a complementary related result, we also treat the case of the heavy-tailed BGK equation.

Dans cet article, on s’intéresse au comportement en temps long d’équations cinétiques linéaires dont les équilibres locaux sont à queue lourde. Notre contribution principale concerne l’équation de Lévy–Fokker–Planck cinétique, pour laquelle nous adaptons des techniques d’hypocoercivité afin de démontrer la convergence exponentielle des solutions vers un équilibre global. En comparant au cas de l’équation de Fokker–Planck cinétique classique, les enjeux ici sont liés au manque de symétrie de l’opérateur non-local de Lévy–Fokker–Planck et à la compréhension de ses propriétés de régularisation. En complément de notre analyse, nous traitons également le cas de l’équation de BGK à queue lourde.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.46

Nathalie Ayi 1 ; Maxime Herda 2 ; Hélène Hivert 3 ; Isabelle Tristani 4

1 Sorbonne Université, Université de Paris, CNRS, Laboratoire Jacques-Louis Lions, 4 place Jussieu, 75005 Paris, France
2 Inria, Univ. Lille, CNRS, UMR 8524 - Laboratoire Paul Painlevé, F-59000 Lille, France
3 Univ. Lyon, École centrale de Lyon, CNRS UMR 5208, Institut Camille Jordan, F-69134 Écully, France
4 DMA, École Normale Supérieure, CNRS, PSL Research University, 45 rue d’Ulm, 75005 Paris, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2020__358_3_333_0,
     author = {Nathalie Ayi and Maxime Herda and H\'el\`ene Hivert and Isabelle Tristani},
     title = {A note on hypocoercivity for kinetic equations with heavy-tailed equilibrium},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {333--340},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {3},
     year = {2020},
     doi = {10.5802/crmath.46},
     language = {en},
}
TY  - JOUR
AU  - Nathalie Ayi
AU  - Maxime Herda
AU  - Hélène Hivert
AU  - Isabelle Tristani
TI  - A note on hypocoercivity for kinetic equations with heavy-tailed equilibrium
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 333
EP  - 340
VL  - 358
IS  - 3
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.46
LA  - en
ID  - CRMATH_2020__358_3_333_0
ER  - 
%0 Journal Article
%A Nathalie Ayi
%A Maxime Herda
%A Hélène Hivert
%A Isabelle Tristani
%T A note on hypocoercivity for kinetic equations with heavy-tailed equilibrium
%J Comptes Rendus. Mathématique
%D 2020
%P 333-340
%V 358
%N 3
%I Académie des sciences, Paris
%R 10.5802/crmath.46
%G en
%F CRMATH_2020__358_3_333_0
Nathalie Ayi; Maxime Herda; Hélène Hivert; Isabelle Tristani. A note on hypocoercivity for kinetic equations with heavy-tailed equilibrium. Comptes Rendus. Mathématique, Volume 358 (2020) no. 3, pp. 333-340. doi : 10.5802/crmath.46. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.46/

[1] Pedro Aceves-Sanchez; Ludovic Cesbron Fractional Diffusion Limit for a Fractional Vlasov–Fokker–Planck Equation, SIAM J. Math. Anal., Volume 51 (2019) no. 1, pp. 469-488 | DOI | MR | Zbl

[2] Nathalie Ayi; Maxime Herda; Hélène Hivert; Isabelle Tristani On discretization of fractionnal Fokker–Planck equations (In preparation)

[3] Marianne Bessemoulin-Chatard; Maxime Herda; Thomas Rey Hypocoercivity and diffusion limit of a finite volume scheme for linear kinetic equations, Math. Comput., Volume 89 (2020) no. 323, pp. 1093-1133 | DOI | MR | Zbl

[4] Krzysztof Bogdan; Andrzej Stós; Paweł Sztonyk Harnack inequality for stable processes on d-sets, Stud. Math., Volume 158 (2003) no. 2, pp. 163-198 | DOI | MR | Zbl

[5] Emeric Bouin; Jean Dolbeault; Laurent Lafleche Fractional Hypocoercivity (2019) (https://arxiv.org/abs/1911.11020)

[6] Djalil Chafaï Entropies, convexity, and functional inequalities: on Φ-entropies and Φ-Sobolev inequalities, J. Math. Kyoto Univ., Volume 44 (2004) no. 2, pp. 325-363 | DOI | MR | Zbl

[7] Nicolas Crouseilles; Hélène Hivert; Mohammed Lemou Numerical schemes for kinetic equations in the anomalous diffusion limit. Part I: The case of heavy-tailed equilibrium, SIAM J. Sci. Comput., Volume 38 (2016) no. 2, p. A737-A764 | DOI | MR | Zbl

[8] Guillaume Dujardin; Frédéric Hérau; Pauline Lafitte Coercivity, hypocoercivity, exponential time decay and simulations for discrete Fokker–Planck equations, Numer. Math., Volume 144 (2020) no. 3, pp. 615-697 | DOI | MR | Zbl

[9] Ivan Gentil; Cyril Imbert The Lévy–Fokker–Planck equation: Φ-entropies and convergence to equilibrium, Asymptotic Anal., Volume 59 (2008) no. 3-4, pp. 125-138 | DOI | Zbl

[10] Frédéric Hérau Introduction to hypocoercive methods and applications for simple linear inhomogeneous kinetic models, Lectures on the analysis of nonlinear partial differential equations. Part 5 (Morningside Lectures in Mathematics), Volume 5, International Press, 2018, pp. 119-147 | MR | Zbl

[11] Frédéric Hérau; Daniela Tonon; Isabelle Tristani Short time diffusion properties of inhomogeneous kinetic equations with fractional collision kernel (2018) (https://arxiv.org/abs/1709.09943)

[12] Mateusz Kwaśnicki Ten equivalent definitions of the fractional Laplace operator, Fract. Calc. Appl. Anal., Volume 20 (2017) no. 1, pp. 7-51 | MR | Zbl

[13] Isabelle Tristani Fractional Fokker–Planck equation, Commun. Math. Sci., Volume 13 (2015) no. 5, pp. 1243-1260 | DOI | MR | Zbl

[14] Cédric Villani Hypocoercivity, Memoirs of the American Mathematical Society, 950, American Mathematical Society, 2009, iv+141 pages | Zbl

[15] Jian Wang A simple approach to functional inequalities for non-local Dirichlet forms, ESAIM, Probab. Stat., Volume 18 (2014), pp. 503-513 | DOI | Numdam | MR | Zbl

  • Jianhai Bao; Jian Wang L 2-exponential ergodicity of stochastic Hamiltonian systems with α-stable Lévy noises, Forum Mathematicum (2025) | DOI:10.1515/forum-2024-0047
  • Baoyan Sun Semigroup decay for the linearized kinetic ellipsoidal Fokker-Planck equation, Journal of Mathematical Analysis and Applications, Volume 518 (2023) no. 2, p. 10 (Id/No 126780) | DOI:10.1016/j.jmaa.2022.126780 | Zbl:1500.35279
  • Nathalie Ayi; Maxime Herda; Hélène Hivert; Isabelle Tristani On a structure-preserving numerical method for fractional Fokker-Planck equations, Mathematics of Computation, Volume 92 (2023) no. 340, pp. 635-693 | DOI:10.1090/mcom/3789 | Zbl:1505.35335
  • Emeric Bouin; Jean Dolbeault; Laurent Lafleche Fractional hypocoercivity, Communications in Mathematical Physics, Volume 390 (2022) no. 3, pp. 1369-1411 | DOI:10.1007/s00220-021-04296-4 | Zbl:1487.35369
  • Cyril Imbert; Luis Enrique Silvestre Global regularity estimates for the Boltzmann equation without cut-off, Journal of the American Mathematical Society, Volume 35 (2022) no. 3, pp. 625-703 | DOI:10.1090/jams/986 | Zbl:1491.35081
  • Jianhai Bao; Jian Wang Coupling approach for exponential ergodicity of stochastic Hamiltonian systems with Lévy noises, Stochastic Processes and their Applications, Volume 146 (2022), pp. 114-142 | DOI:10.1016/j.spa.2021.12.014 | Zbl:1492.60157

Cité par 6 documents. Sources : Crossref, zbMATH

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: