Comptes Rendus
Topologie différentielle
An HP2-bundle over S4 with nontrivial Â-genus
Comptes Rendus. Mathématique, Volume 359 (2021) no. 2, pp. 149-154.

Nous expliquons l’existence d’un fibré différentiel de base S4 et fibre HP2, dont l’espace total est de A^-genre non-trivial. En combinant ce resultat avec un argument de Hitchin, ceci répond à une question de Schick et implique que l’espace de métriques riemanniennes de courbure sectionnelle positive sur une variété fermée peut avoir des groupes d’homotopie rationnelle supérieures non-triviaux.

We explain the existence of a smooth HP2-bundle over S4 whose total space has nontrivial A^-genus. Combined with an argument going back to Hitchin, this answers a question of Schick and implies that the space of Riemannian metrics of positive sectional curvature on a closed manifold can have nontrivial higher rational homotopy groups.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.156
Classification : 57R20, 55R40, 57R22, 58D17

Manuel Krannich 1 ; Alexander Kupers 2 ; Oscar Randal-Williams 1

1 Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WB, UK
2 Department of Computer and Mathematical Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2021__359_2_149_0,
     author = {Manuel Krannich and Alexander Kupers and Oscar Randal-Williams},
     title = {An $\protect \text{HP}^2$-bundle over $\protect \text{S}^4$ with nontrivial {\^A-genus}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {149--154},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {359},
     number = {2},
     year = {2021},
     doi = {10.5802/crmath.156},
     language = {en},
}
TY  - JOUR
AU  - Manuel Krannich
AU  - Alexander Kupers
AU  - Oscar Randal-Williams
TI  - An $\protect \text{HP}^2$-bundle over $\protect \text{S}^4$ with nontrivial Â-genus
JO  - Comptes Rendus. Mathématique
PY  - 2021
SP  - 149
EP  - 154
VL  - 359
IS  - 2
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.156
LA  - en
ID  - CRMATH_2021__359_2_149_0
ER  - 
%0 Journal Article
%A Manuel Krannich
%A Alexander Kupers
%A Oscar Randal-Williams
%T An $\protect \text{HP}^2$-bundle over $\protect \text{S}^4$ with nontrivial Â-genus
%J Comptes Rendus. Mathématique
%D 2021
%P 149-154
%V 359
%N 2
%I Académie des sciences, Paris
%R 10.5802/crmath.156
%G en
%F CRMATH_2021__359_2_149_0
Manuel Krannich; Alexander Kupers; Oscar Randal-Williams. An $\protect \text{HP}^2$-bundle over $\protect \text{S}^4$ with nontrivial Â-genus. Comptes Rendus. Mathématique, Volume 359 (2021) no. 2, pp. 149-154. doi : 10.5802/crmath.156. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.156/

[1] Boris Botvinnik; Johannes Ebert; David J. Wraith On the topology of the space of Ricci-positive metrics, Proc. Am. Math. Soc., Volume 148 (2020), pp. 3997-4006 | DOI | MR | Zbl

[2] Dan Burghelea The rational homotopy groups of Diff(M) and Homeo(Mn) in the stability range, Algebraic topology, Aarhus 1978 (Proc. Sympos., Univ. Aarhus, Aarhus, 1978) (Lecture Notes in Mathematics), Volume 763 (1979), pp. 604-626 | DOI | MR | Zbl

[3] Dan Burghelea; Richard Lashof Geometric transfer and the homotopy type of the automorphism groups of a manifold, Trans. Am. Math. Soc., Volume 269 (1982) no. 1, pp. 1-38 | DOI | MR | Zbl

[4] Dan Burghelea; Richard Lashof; Melvin Rothenberg Groups of automorphisms of manifolds, Lecture Notes in Mathematics, 473, Springer, 1975, vii+156 pages with an appendix (“The topological category”) by E. Pedersen | MR | Zbl

[5] Johannes Ebert; Oscar Randal-Williams Generalised Miller–Morita–Mumford classes for block bundles and topological bundles, Algebr. Geom. Topol., Volume 14 (2014) no. 2, pp. 1181-1204 | DOI | MR | Zbl

[6] F. Thomas Farrell; Wilderich Tuschmann Mini-workshop: Spaces and moduli spaces of Riemannian metrics, Oberwolfach Rep., Volume 14 (2017) no. 1, pp. 133-166 (abstracts from the mini-workshop held January 8–14, 2017) | DOI | MR | Zbl

[7] Bernhard Hanke; Thomas Schick; Wolfgang Steimle The space of metrics of positive scalar curvature, Publ. Math., Inst. Hautes Étud. Sci., Volume 120 (2014), pp. 335-367 | DOI | MR | Zbl

[8] Friedrich Hirzebruch Über die quaternionalen projektiven Räume, S.-B. Math.-Nat. Kl. Bayer. Akad. Wiss., Volume 1953 (1954), pp. 301-312 | MR | Zbl

[9] Friedrich Hirzebruch Topological methods in algebraic geometry, Classics in Mathematics, Springer, 1995, xii+234 pages (reprint of the 1978 edition) | MR | Zbl

[10] Nigel Hitchin Harmonic spinors, Adv. Math., Volume 14 (1974), pp. 1-55 | DOI | MR | Zbl

[11] Kiyoshi Igusa The stability theorem for smooth pseudoisotopies, K-Theory, Volume 2 (1988) no. 1-2, pp. 1-355 | DOI | MR | Zbl

[12] Oscar Randal-Williams An upper bound for the pseudoisotopy stable range, Math. Ann., Volume 368 (2017) no. 3-4, pp. 1081-1094 | DOI | MR | Zbl

[13] Thomas Schick The topology of positive scalar curvature, Proceedings of the International Congress of Mathematicians (Seoul 2014). Vol. II (2014), pp. 1285-1307 | MR | Zbl

[14] Charles T. C. Wall Surgery on compact manifolds, Mathematical Surveys and Monographs, 69, American Mathematical Society, 1999, xvi+302 pages (edited and with a foreword by A. A. Ranicki) | MR | Zbl

  • Mark Walsh; David J. Wraith H-space and loop space structures for intermediate curvatures, Communications in Contemporary Mathematics, Volume 25 (2023) no. 6, p. 54 (Id/No 2250017) | DOI:10.1142/s0219199722500171 | Zbl:7696883
  • Wilderich Tuschmann; Michael Wiemeler On the topology of moduli spaces of non-negatively curved Riemannian metrics, Mathematische Annalen, Volume 384 (2022) no. 3-4, pp. 1629-1651 | DOI:10.1007/s00208-021-02327-y | Zbl:1500.58005
  • Georg Frenck; Jan-Bernhard Kordaß Spaces of positive intermediate curvature metrics, Geometriae Dedicata, Volume 214 (2021), pp. 767-800 | DOI:10.1007/s10711-021-00635-w | Zbl:1518.58007
  • Bernd Ammann; Bernhard Hanke; Anna Sakovich Analysis, geometry and topology of positive scalar curvature metrics. Abstracts from the workshop held June 27 – July 3, 2021 (hybrid meeting), Oberwolfach Rep. 18, No. 2, 1579-1649, 2021 | DOI:10.4171/owr/2021/30 | Zbl:1506.00036

Cité par 4 documents. Sources : zbMATH

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: