[Une preuve simple de la régularité $C^{1,1}$ pour l’équation eikonale]
We give a short and self-contained proof of the interior $C^{1,1}$ regularity of solutions $\varphi \colon \Omega \rightarrow \mathbb{R}$ to the eikonal equation $\vert \nabla \varphi \vert =1$ in an open set $\Omega \subset \mathbb{R}^{N}$ in dimension $N\ge 1$ under the assumption that $\varphi $ is pointwise differentiable in $\Omega $.
Nous présentons une preuve courte et auto-contenue de la régularité intérieure $C^{1,1}$ des solutions $\varphi \colon \Omega \rightarrow \mathbb{R}$ de l’équation eikonale $\vert \nabla \varphi \vert =1$ dans un ouvert $\Omega \subset \mathbb{R}^{N}$ en toute dimension $N\ge 1$ sous l’hypothèse que $\varphi $ est différentiable en tout point de $\Omega $.
Révisé le :
Accepté le :
Publié le :
Keywords: Eikonal equation, characteristics, regularity
Mots-clés : Équation eikonale, caractéristiques, régularité
Radu Ignat 1
CC-BY 4.0
@article{CRMATH_2025__363_G9_887_0,
author = {Radu Ignat},
title = {A short proof of the $C^{1,1}$ regularity for the eikonal equation},
journal = {Comptes Rendus. Math\'ematique},
pages = {887--891},
year = {2025},
publisher = {Acad\'emie des sciences, Paris},
volume = {363},
doi = {10.5802/crmath.768},
language = {en},
}
Radu Ignat. A short proof of the $C^{1,1}$ regularity for the eikonal equation. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 887-891. doi: 10.5802/crmath.768
[1] Distance functions and almost global solutions of eikonal equations, Commun. Partial Differ. Equations, Volume 35 (2010) no. 3, pp. 391-414 | DOI | MR | Zbl
[2] Semiconcave functions, Hamilton–Jacobi equations, and optimal control, Progress in Nonlinear Differential Equations and their Applications, 58, Birkhäuser, 2004, xiv+304 pages | MR | DOI | Zbl
[3] A regularizing property of the 2D-eikonal equation, Commun. Partial Differ. Equations, Volume 40 (2015) no. 8, pp. 1543-1557 | DOI | MR | Zbl
[4] Optimal Besov differentiability for entropy solutions of the eikonal equation, Commun. Pure Appl. Math., Volume 73 (2020) no. 2, pp. 317-349 | DOI | MR | Zbl
[5] Two-dimensional unit-length vector fields of vanishing divergence, J. Funct. Anal., Volume 262 (2012) no. 8, pp. 3465-3494 | DOI | MR | Zbl
[6] Line-energy Ginzburg–Landau models: zero-energy states, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5), Volume 1 (2002) no. 1, pp. 187-202 | MR | Numdam | Zbl
[7] Generalized solutions of Hamilton–Jacobi equations, Research Notes in Mathematics, 69, Pitman Advanced Publishing Program, 1982, iv+317 pages | MR | Zbl
Cité par Sources :
Commentaires - Politique
