[Diffusion et comportement ondulatoire dans le modèle linéaire de Voigt]
On analyse un problème aux limites
A boundary value problem
Accepté le :
Publié le :
Mots-clés : milieux continus, équations aux dérivées partielles, viscoéllasticité, supraconductivité
Monica De Angelis 1 ; Pasquale Renno 1
@article{CRMECA_2002__330_1_21_0, author = {Monica De Angelis and Pasquale Renno}, title = {Diffusion and wave behaviour in linear {Voigt} model}, journal = {Comptes Rendus. M\'ecanique}, pages = {21--26}, publisher = {Elsevier}, volume = {330}, number = {1}, year = {2002}, doi = {10.1016/S1631-0721(02)01421-3}, language = {en}, }
Monica De Angelis; Pasquale Renno. Diffusion and wave behaviour in linear Voigt model. Comptes Rendus. Mécanique, Volume 330 (2002) no. 1, pp. 21-26. doi : 10.1016/S1631-0721(02)01421-3. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/S1631-0721(02)01421-3/
[1] Hyperbolicity and change of type in the flow of viscoestic fluids, Arch. Rational Mech. Anal., Volume 87 (1985), pp. 213-251
[2] Wave propagations in rods of Voigt material and viscoelastic materials with three-parameters models, Quart. Appl. Math., Volume 14 (1956), pp. 153-173
[3] On some viscoelastic models, Atti Acad. Naz. Lincei Rend. Fis., Volume 75 (1983) no. 6, pp. 1-10
[4] Decay, growth, continuous dependence and uniqueness results of generalized heat theories, Appl. Anal., Volume 38 (1990), pp. 231-243
[5] Qualitative Estimates for Partial Differential Equations, CRC Press, 1996 (p. 368)
[6] Hydrodynamics, Dover, 1932 (p. 708)
[7] Soluzione di un problema al contorno della magneto idrodinamica, Ann. Mat. Pura Appl., Volume 35 (1953), pp. 269-290
[8] Physics and Application of the Josephson Effect, Wiley, New York, 1982 (p. 530)
[9] Smoothing effect and propagations of singularities for viscoelastic plates, J. Math. Anal. Appl., Volume 206 (1997), pp. 397-427
[10] Nonlinear Wave Equations Perturbed by Viscous Terms, Walter de Gruyher, Berlin, 2000 (p. 329)
[11] A mixed problem for a class of equation of third order, Siberian Math. J., Volume 22 (1981) no. 6, pp. 867-872
[12] Global existence and exponential stability of small solutions to nonlinear viscoelasticity, Comm. Math. Phys. (1992), pp. 189-208
[13] A degenerate pseudoparabolic regularization of a nonlinear forward–backward heat equation arising in the theory of heat and mass exchange in stably stratified turbolent shear flow, SIAM J. Math. Anal., Volume 24 (1993) no. 6, pp. 1414-1439
[14] Fundamental solution of a dissipative operator, Rend. Acad. Sci. Fis. Mat. Napoli, Volume LXIV (1997), pp. 295-314
[15] Estimates for the perturbed sine-Gordon equation, Rend. Circ. Mat. Palermo (2) Suppl., Volume 57 (1998), pp. 199-204
[16] Regular solution and energy decay for the equation of viscoelasticity with nonlinear damping on the boundary, J. Math. Anal. Appl., Volume 224 (1998), pp. 273-296
[17] On the nonlinear initial boundary value problem for the equation of viscoelasticity, Nonlinear Anal., Volume 31 (1998) no. 1/2, pp. 229-242
[18] On the rate of decay of solutions to linear viscoelastic equation, Math. Meth. Appl. Sci., Volume 23 (2000), pp. 203-226
[19] Wave equation with nonlinear dissipation in noncylindrical domains, Dokl. Math., Volume 62 (2000) no. 2, pp. 17-19
[20] A comparison of perturbation methods for nonlinear hyperbolic waves, Proc. Adv. Sem. Wisconsin, Volume 45 (1980), pp. 223-276
[21] Asymptotic analysis for the strip problem related to a parabolic third order operator, Appl. Math. Lett., Volume 14 (2001) no. 4, pp. 425-430
[22] Analytic Inequalities, Springer, 1970 (p. 404)
[23] On a wave theory for the operator ε∂t(∂t2−c12Δn)+∂t2−c02Δn, Ann. Mat. Pura Appl., Volume 136 (1984) no. 4, pp. 355-389
Cité par Sources :
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier