[Sensibilité et réceptivité d'une couche limite]
La relation entre les fonctions de réceptivité et de sensibilité d'une couche limite incompressible à des perturbations du type sources harmoniques est démontrée. La réceptivité décrit la naissance d'une onde d'instabilité alors que la sensibilité représente la modification de l'état d'un système à une variation d'un de ses paramètres. L'évolution spatiale des ondes d'instabilité (l'état du système) est donnée par la solution des équations de stabilité non locales. Les fonctions de réceptivité et de sensibilité sont déduites de la solution des équations adjointes. La théorie est appliquée aux ondes de Tollmien–Schlichting qui se développent spatiallement dans la couche limite de Blasius.
The relation between the receptivity and the sensitivity of the incompressible flow in the boundary layer over a flat plate to harmonic perturbations is determined. Receptivity describes the birth of a disturbance, whereas sensitivity is a concept of larger breath, describing the modification incurred by the state of a system as a response to parametric variations. The governing equations ruling the system's state are the non-local stability equations. Receptivity and sensitivity functions can be obtained from the solution of the adjoint system of equations. An application to the case of Tollmien–Schlichting waves spatially developing in a flat plate boundary layer is studied.
Révisé le :
Publié le :
Mot clés : mécanique des fluides, stabilité, adjoint, réceptivitité, sensibilité
Christophe Airiau 1 ; Steeve Walther 1 ; Alessandro Bottaro 1
@article{CRMECA_2002__330_4_259_0, author = {Christophe Airiau and Steeve Walther and Alessandro Bottaro}, title = {Boundary layer sensitivity and receptivity}, journal = {Comptes Rendus. M\'ecanique}, pages = {259--265}, publisher = {Elsevier}, volume = {330}, number = {4}, year = {2002}, doi = {10.1016/S1631-0721(02)01450-X}, language = {en}, }
Christophe Airiau; Steeve Walther; Alessandro Bottaro. Boundary layer sensitivity and receptivity. Comptes Rendus. Mécanique, Volume 330 (2002) no. 4, pp. 259-265. doi : 10.1016/S1631-0721(02)01450-X. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/S1631-0721(02)01450-X/
[1] M.V. Morkovin, Recent insights into instability and transition to turbulence in open-flow systems, Technical report 88-44, ICASE, August 1988
[2] Non-parallel acoustic receptivity of a Blasius boundary layer using an adjoint approach, Flow, Turb. Comb., Volume 65 (2000) no. 3/4, pp. 347-367
[3] A finite Reynolds-number approach for the prediction of boundary-layer receptivity in localized regions, Phys. Fluids A, Volume 4 (1992) no. 11
[4] Localized receptivity of boundary layers, Phys. Fluids A, Volume 4 (1992) no. 7
[5] Boundary-layer receptivity to long-wave free-stream disturbances, Annual Rev. Fluid Mech., Volume 21 (1989), pp. 137-166
[6] Adjoint system and their role in the receptivity problem for boundary layer, J. Fluid Mech., Volume 292 (1995), pp. 183-204
[7] Optimal control of Tollmien–Schlichting waves in a developing boundary layer, Phys. Fluids, Volume 13 (2001) no. 7, pp. 2087-2096
[8] A self-contained automated methodology for optimal flow control, AIAA J., Volume 35 (1997), pp. 816-824
[9] Parabolized stability equations, Annual Rev. Fluid Mech., Volume 29 (1997), pp. 245-283
Cité par Sources :
Commentaires - Politique