Comptes Rendus
Boundary layer sensitivity and receptivity
[Sensibilité et réceptivité d'une couche limite]
Comptes Rendus. Mécanique, Volume 330 (2002) no. 4, pp. 259-265.

La relation entre les fonctions de réceptivité et de sensibilité d'une couche limite incompressible à des perturbations du type sources harmoniques est démontrée. La réceptivité décrit la naissance d'une onde d'instabilité alors que la sensibilité représente la modification de l'état d'un système à une variation d'un de ses paramètres. L'évolution spatiale des ondes d'instabilité (l'état du système) est donnée par la solution des équations de stabilité non locales. Les fonctions de réceptivité et de sensibilité sont déduites de la solution des équations adjointes. La théorie est appliquée aux ondes de Tollmien–Schlichting qui se développent spatiallement dans la couche limite de Blasius.

The relation between the receptivity and the sensitivity of the incompressible flow in the boundary layer over a flat plate to harmonic perturbations is determined. Receptivity describes the birth of a disturbance, whereas sensitivity is a concept of larger breath, describing the modification incurred by the state of a system as a response to parametric variations. The governing equations ruling the system's state are the non-local stability equations. Receptivity and sensitivity functions can be obtained from the solution of the adjoint system of equations. An application to the case of Tollmien–Schlichting waves spatially developing in a flat plate boundary layer is studied.

Reçu le :
Révisé le :
Publié le :
DOI : 10.1016/S1631-0721(02)01450-X
Keywords: fluid mechanics, stability, adjoint, receptivity, sensitivity
Mot clés : mécanique des fluides, stabilité, adjoint, réceptivitité, sensibilité

Christophe Airiau 1 ; Steeve Walther 1 ; Alessandro Bottaro 1

1 IMFT, allée du Professeur Camille Soula, 31400 Toulouse, France
@article{CRMECA_2002__330_4_259_0,
     author = {Christophe Airiau and Steeve Walther and Alessandro Bottaro},
     title = {Boundary layer sensitivity and receptivity},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {259--265},
     publisher = {Elsevier},
     volume = {330},
     number = {4},
     year = {2002},
     doi = {10.1016/S1631-0721(02)01450-X},
     language = {en},
}
TY  - JOUR
AU  - Christophe Airiau
AU  - Steeve Walther
AU  - Alessandro Bottaro
TI  - Boundary layer sensitivity and receptivity
JO  - Comptes Rendus. Mécanique
PY  - 2002
SP  - 259
EP  - 265
VL  - 330
IS  - 4
PB  - Elsevier
DO  - 10.1016/S1631-0721(02)01450-X
LA  - en
ID  - CRMECA_2002__330_4_259_0
ER  - 
%0 Journal Article
%A Christophe Airiau
%A Steeve Walther
%A Alessandro Bottaro
%T Boundary layer sensitivity and receptivity
%J Comptes Rendus. Mécanique
%D 2002
%P 259-265
%V 330
%N 4
%I Elsevier
%R 10.1016/S1631-0721(02)01450-X
%G en
%F CRMECA_2002__330_4_259_0
Christophe Airiau; Steeve Walther; Alessandro Bottaro. Boundary layer sensitivity and receptivity. Comptes Rendus. Mécanique, Volume 330 (2002) no. 4, pp. 259-265. doi : 10.1016/S1631-0721(02)01450-X. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/S1631-0721(02)01450-X/

[1] M.V. Morkovin, Recent insights into instability and transition to turbulence in open-flow systems, Technical report 88-44, ICASE, August 1988

[2] C. Airiau Non-parallel acoustic receptivity of a Blasius boundary layer using an adjoint approach, Flow, Turb. Comb., Volume 65 (2000) no. 3/4, pp. 347-367

[3] M. Choudhari; C.L. Street A finite Reynolds-number approach for the prediction of boundary-layer receptivity in localized regions, Phys. Fluids A, Volume 4 (1992) no. 11

[4] J.D. Crouch Localized receptivity of boundary layers, Phys. Fluids A, Volume 4 (1992) no. 7

[5] M.E. Goldstein; L.S. Hultgren Boundary-layer receptivity to long-wave free-stream disturbances, Annual Rev. Fluid Mech., Volume 21 (1989), pp. 137-166

[6] D.C. Hill Adjoint system and their role in the receptivity problem for boundary layer, J. Fluid Mech., Volume 292 (1995), pp. 183-204

[7] S. Walther; C. Airiau; A. Bottaro Optimal control of Tollmien–Schlichting waves in a developing boundary layer, Phys. Fluids, Volume 13 (2001) no. 7, pp. 2087-2096

[8] R.D. Joslin; M.D. Gunzburger; R.A. Nicolaides; F. Erlebacher; M.Y. Hussaini A self-contained automated methodology for optimal flow control, AIAA J., Volume 35 (1997), pp. 816-824

[9] T.H. Herbert Parabolized stability equations, Annual Rev. Fluid Mech., Volume 29 (1997), pp. 245-283

Cité par Sources :

Commentaires - Politique