[Sur des critères de chargement en plasticité]
Les critères de chargement dans la formulation dans l'espace des déformations de Lagrange pour la plasticité indépendante du taux de déformation sont comparés à deux autres types de conditions, celle de Nguyen et Bui et celle du type Kuhn–Tucker. Quand ces dernières sont exprimées entièrement dans l'espace des déformations, leur relation au critère de chargement en formulation d'espace de déformations devient transparent.
The loading criteria of the Lagrangian strain-space formulation of rate-independent plasticity are compared with those of Nguyen and Bui and those of Kuhn–Tucker type. When the latter two sets of conditions are expressed in a fully strain-space form, their relationship to the loading criteria of the strain-space formulation becomes transparent.
Accepté le :
Publié le :
Mots-clés : milieux continus, plasticité, critères de chargement
James Casey 1
@article{CRMECA_2002__330_4_285_0, author = {James Casey}, title = {On loading criteria in plasticity}, journal = {Comptes Rendus. M\'ecanique}, pages = {285--290}, publisher = {Elsevier}, volume = {330}, number = {4}, year = {2002}, doi = {10.1016/S1631-0721(02)01460-2}, language = {en}, }
James Casey. On loading criteria in plasticity. Comptes Rendus. Mécanique, Volume 330 (2002) no. 4, pp. 285-290. doi : 10.1016/S1631-0721(02)01460-2. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/S1631-0721(02)01460-2/
[1] Sur les matériaux élastoplastiques à écrouissage positif ou négatif, J. Méc., Volume 13 (1974), pp. 321-342
[2] The significance of formulating plasticity theory with reference to loading surfaces in strain space, Internat. J. Engrg. Sci., Volume 13 (1975), pp. 785-797
[3] On the characterization of strain-hardening in plasticity, J. Appl. Mech., Volume 48 (1981), pp. 285-296
[4] A remark on the definition of hardening, softening, and perfectly plastic behavior, Acta Mech., Volume 48 (1983), pp. 91-94
[5] Further constitutive results in finite plasticity, Quart. J. Mech. Appl. Math., Volume 37 (1984), pp. 231-259
[6] Subcritical, critical and supercritical directions of loading in plasticity, J. Méc. Théor. Appl., Volume 5 (1986), pp. 685-701
[7] Constitutive results for finitely deforming elastic-plastic materials (K.J. Willam, ed.), Constitutive Equations. Macro and Computational Aspects, ASME, 1984, pp. 53-71
[8] A critical review of the state of finite plasticity, J. Appl. Math. Phys. (ZAMP), Volume 41 (1990), pp. 315-394
[9] On the loading/unloading conditions of infinitesimal discrete elasto-plasticity, Engrg. Comput., Volume 12 (1995), pp. 373-383
[10] On elastic-thermo-plastic materials at finite deformations, Internat. J. Plast., Volume 14 (1998), pp. 173-191
[11] A.A. Brown, J. Casey, D.J. Nikkel, Experiments conducted in the context of the strain-space formulation of plasticity, Internat. J. Plast., in press
[12] Accuracy and stability of integration algorithms for elastoplastic constitutive relations, Internat. J. Numer. Methods Engrg., Volume 21 (1985), pp. 1561-1576
[13] A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic constitutive equations, Comput. Methods Appl. Mech. Engrg., Volume 49 (1985), pp. 221-245
[14] On the computational significance of the intermediate configuration and hyperelastic relations in finite deformation elastoplasticity, Mech. Mat., Volume 4 (1985), pp. 439-451
[15] Computational Inelasticity, Springer, 1998
[16] A prescription for the identification of finite plastic strain, Internat. J. Engrg. Sci., Volume 30 (1992), pp. 1257-1278
[17] On the nonequivalence of the stress-space and strain-space formulations of plasticity, J. Appl. Mech., Volume 50 (1983), pp. 350-354
Cité par Sources :
Commentaires - Politique