L'instabilité et les particularités de l'évolution d'une nappe tourbillonnaire sont étudiées. Nous considérons l'auto-organisation de tourbillons localisés (dans des écoulements bidimensionnels) en groupements de tourbillons, en structures sous forme de spirale et nous montrons que les états quasi-finaux « n'oublient pas » les conditions initiales. Nous discutons la signification physique des résultats obtenus.
The instability and the features of vortex sheet evolution are studied. We consider the self-organization of localized vortices (in two-dimensional flows) into clusters-like and spiral-like structures and show that quasi-final states do not ‘forget’ conditions of their initial origin. We discuss the physical significance of the obtained results.
Révisé le :
Publié le :
Keywords: fluid mechanics, instabilities, equilibrium state, numerical study
Vadim Pavlov 1 ; Daniel Buisine 1 ; Stéphane Decossin 2
@article{CRMECA_2002__330_11_757_0, author = {Vadim Pavlov and Daniel Buisine and St\'ephane Decossin}, title = {Instabilit\'e et particularit\'es de l'\'evolution d'une nappe tourbillonnaire}, journal = {Comptes Rendus. M\'ecanique}, pages = {757--762}, publisher = {Elsevier}, volume = {330}, number = {11}, year = {2002}, doi = {10.1016/S1631-0721(02)01523-1}, language = {fr}, }
TY - JOUR AU - Vadim Pavlov AU - Daniel Buisine AU - Stéphane Decossin TI - Instabilité et particularités de l'évolution d'une nappe tourbillonnaire JO - Comptes Rendus. Mécanique PY - 2002 SP - 757 EP - 762 VL - 330 IS - 11 PB - Elsevier DO - 10.1016/S1631-0721(02)01523-1 LA - fr ID - CRMECA_2002__330_11_757_0 ER -
Vadim Pavlov; Daniel Buisine; Stéphane Decossin. Instabilité et particularités de l'évolution d'une nappe tourbillonnaire. Comptes Rendus. Mécanique, Volume 330 (2002) no. 11, pp. 757-762. doi : 10.1016/S1631-0721(02)01523-1. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/S1631-0721(02)01523-1/
[1] Statistical hydrodynamics, Nuovo Cimento Suppl, Volume 6 (1949) no. 4, pp. 279-2359 (a) (b) Relaxation towards a statistical equilibrium state in two-dimensional perfect fluid dynamics Phys. Rev. Lett, 69, 1992, pp. 2776 (c) Statistical mechanics, Euler's equations, and Jupiter's Red Spot Phys. Rev. A, 45, 1992, pp. 2328 (d) Statistical mechanics of point vortices Phys. Rev. E, 51, 5, 1995, pp. 4432-4452
[2] Partition functions and equilibrium measures in two-dimensional and quasi-three-dimensional turbulence, Phys. Fluids, Volume 8 (1996) no. 10, pp. 2656-2660
[3] V. Pavlov, D. Buisine, S. Decossin, Whether the two-dimensional Eulerian turbulence evolves to a unique final state, Phys. Fluids, accepté
[4] Some remarks on the physical foundation of the Hamiltonian description of fluid motions, Eur. J. Mech. B Fluids, Volume 16 (1997) no. 4, pp. 509-555 (a) (b) On the Hamiltonian approach: Applications to geophysical flows Nonlinear Processes Geophys, 5, 1998, pp. 219-240 (c) Formation of vortex clusters on a sphere Nonlinear Processes Geophys, 8, 2001, pp. 9-19
[5] Quelques remarques sur la dynamique Hamiltonienne des tourbillons, C. R. Acad. Sci. Paris, Volume 329 (2001), p. 12
[6] Relaxation of 2D turbulence to a mataequilibrium near the minimum enstrophy, Phys. Rev. Lett, Volume 72 (1994), p. 2187
[7] An Introduction to Fluid Dynamics, Cambridge University Press, 1967 (p. 537)
[8] Phys. Rev. Lett, 75 (1995), p. 3277
Cité par Sources :
Commentaires - Politique