[Fonctions thermodynamiques du gaz des tourbillons ponctuels]
Nous formulons l'équation non linéaire integro-différentielle pour l'Hamiltonien collectif moyenné d'un gas de tourbillons 2D intéragissant et trouvons sa solution analytique. Nous discutons aussi de la distribution d'équilibre de probabilité axisymétrique possible d'un tel modèle. Nous montrons également que la probabilité pour un système de tourbillons ponctuels doit prendre une forme similaire à la distribution de Gibbs. Notons que les fondaments physiques d'un tel systèm différent de la théorie standard des particules en intéraction. Nous trouvons les fonctions « thermodynamiques » pour les températures positives et négatives du système et discutons le fait que les états avec température positive correspondent à une distribution ayant le maximum central, tandis que les états avec température négative correspondent aux distributions localisées au voisinage des parois du containeur.
We formulate nonlinear integro-differential equation for the averaged collective Hamiltonian of a gas of interacting two-dimensional vortices, derive its analytical solution, and discuss the equilibrium, axially-symmetrical, probability distributions that are possible for such a model. We also theoretically prove that the probability distribution for a system of 2D point vortices takes a form similar to the Gibbs distribution, but point out that the physical fundamentals of such a system differ from the standard theory of interacting particles. Furthermore, we find thermodynamical functions for positive and negative “temperature” of the system, and point out that the states with positive “temperature” correspond to stationary bell-shape vortex distributions, while the states with negative “temperature” correspond to distributions localized near container walls.
Accepté le :
Publié le :
Mot clés : Systèmes dynamiques, Description Hamiltonienne, Gaz des tourbillons localisés, « Températures » positive et négative
Emilie Bécu 1 ; Vadim Pavlov 2, 3 ; Elizabeth P. Tito 
@article{CRMECA_2008__336_7_565_0, author = {Emilie B\'ecu and Vadim Pavlov and Elizabeth P. Tito}, title = {Thermodynamical functions for a gas of point vortices}, journal = {Comptes Rendus. M\'ecanique}, pages = {565--571}, publisher = {Elsevier}, volume = {336}, number = {7}, year = {2008}, doi = {10.1016/j.crme.2008.04.003}, language = {en}, }
Emilie Bécu; Vadim Pavlov; Elizabeth P. Tito. Thermodynamical functions for a gas of point vortices. Comptes Rendus. Mécanique, Volume 336 (2008) no. 7, pp. 565-571. doi : 10.1016/j.crme.2008.04.003. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2008.04.003/
[1] Statistical hydrodynamics, Nuovo Cimento Suppl. 2 (9), Volume 6 (1949), pp. 279-287
[2] Statistical mechanics of two-dimensional vortices in a bounded container, Phys. Fluids, Volume 19 (1976), p. 1459
[3] Statistical mechanics of the organization into two-dimensional coherent structures (M. Goldshtik, ed.), Structural Turbulence, Acad. Nauk SSSR Novosibirsk, ITPh, 1982, pp. 103-114
[4] Statistical mechanics of Euler's equations in two dimensions, Phys. Rev., Volume 65 (1990), p. 2137
[5] A maximum entropy principle for two-dimensional perfect fluid dynamics, J. Stat. Phys., Volume 65 (1991), p. 531
[6] Statistical mechanics, Euler's equations, and Jupiter's Red Spot, Phys. Rev. A, Volume 45 (1992) no. 4, p. 2328
[7] Statistical equilibrium states for two-dimensional flows, J. Fluid Mech., Volume 229 (1991), p. 291
[8] Final equilibrium state of a two-dimensional shear layer, J. Fluid Mech., Volume 233 (1991), p. 661
[9] Statistical mechanics of point vortices, Phys. Rev. E, Volume 51 (1995) no. 5, p. 4432
[10] Partition functions and equilibrium measures in two-dimensional and quasi-three-dimensional turbulence, Phys. Fluids, Volume 8 (1996) no. 10, p. 2656
[11] Numerical simulations of Jupiter's Great Red Spot, Nature (London), Volume 331 (1988), p. 693
[12] The two-dimensional Colomb gas, vortex unbinding, and superfluid–superconducting films, Rev. Mod. Phys., Volume 59 (1987), p. 1001
[13] Maximum entropy versus minimum enstrophy vortices, Phys. Fluids, Volume 11 (1999) no. 11, p. 3465
[14] Experiments on free decay of quasi-two-dimensional turbulent flows, Phys. Rev. E, Volume 65 (2002), p. 036316
[15] Mechanics of Deformable Bodies – Lectures on Theoretical Physics, vol. II, Academic Press, New York, San Francisco, London, 1964 (translated from 2nd German edition by G. Kuerti)
[16] Statistical Physics, Pergamon Press, Oxford, New York, 1986
[17] Thermodynamics, Statistical Physics and Kinetics, Nauka, Moscow, 1977
[18] E. Fermi, Collected Papers (Note e Memorie), The Chicago University Press – Accademia Nazionale dei Lincei, Roma, §60, p. 571
Cité par Sources :
Commentaires - Politique