Comptes Rendus
Plasticity criterion for porous medium with cylindrical void
Comptes Rendus. Mécanique, Volume 330 (2002) no. 11, pp. 763-768.

A simple Gurson-based yield criterion for porous materials with cylindrical voids in plane stress is proposed. With no adjustable parameters, it compares quite satisfactorily with recent numerical data by Francescato et al. for different porosities. It is non-analytic with respect to the porosity, and displays an angulous point.

On développe à partir du critère de Gurson un nouveau critère de plasticité pour un matériau poreux à vides cylindriques, en contraintes planes. D'une forme simple et sans paramètres ajustables, ce critère est non-analytique par rapport à la porosité et présente un point anguleux. Il reproduit de façon satisfaisante des résultats numériques récents de Francescato et al. pour différentes porosités.

Received:
Accepted:
Published online:
DOI: 10.1016/S1631-0721(02)01527-9
Keywords: porous media, ductile behavior, perfect plasticity, Gurson model, cylindrical voids, homogenization
Mot clés : milieux pareux, comportement ductile, plasticité parfaite, modèle de Gurson, cavités cylindriques, homogénéisation

Yves-Patrick Pellegrini 1

1 Département de physique théorique et appliquée, CEA, BP 12, 91680 Bruyères-le-Châtel, France
@article{CRMECA_2002__330_11_763_0,
     author = {Yves-Patrick Pellegrini},
     title = {Plasticity criterion for porous medium with cylindrical void},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {763--768},
     publisher = {Elsevier},
     volume = {330},
     number = {11},
     year = {2002},
     doi = {10.1016/S1631-0721(02)01527-9},
     language = {en},
}
TY  - JOUR
AU  - Yves-Patrick Pellegrini
TI  - Plasticity criterion for porous medium with cylindrical void
JO  - Comptes Rendus. Mécanique
PY  - 2002
SP  - 763
EP  - 768
VL  - 330
IS  - 11
PB  - Elsevier
DO  - 10.1016/S1631-0721(02)01527-9
LA  - en
ID  - CRMECA_2002__330_11_763_0
ER  - 
%0 Journal Article
%A Yves-Patrick Pellegrini
%T Plasticity criterion for porous medium with cylindrical void
%J Comptes Rendus. Mécanique
%D 2002
%P 763-768
%V 330
%N 11
%I Elsevier
%R 10.1016/S1631-0721(02)01527-9
%G en
%F CRMECA_2002__330_11_763_0
Yves-Patrick Pellegrini. Plasticity criterion for porous medium with cylindrical void. Comptes Rendus. Mécanique, Volume 330 (2002) no. 11, pp. 763-768. doi : 10.1016/S1631-0721(02)01527-9. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/S1631-0721(02)01527-9/

[1] A.L. Gurson Continuum theory of ductile rupture by void nucleation and growth: Part I. Yield criteria and flow rules for porous ductile media, J. Engrg. Math. Tech, Volume 99 (1977), pp. 2-15

[2] V. Tvergaard Influence of voids on shear band instabilities under plane strain conditions, Internat. J. Fracture, Volume 17 (1981) no. 4, pp. 389-407

[3] O. Richmond, R.E. Smelser, Alcoa Technical Center Memorandum, March 7, 1985, unpublished

[4] Y. Sun; D. Wang A lower bound approach to the yield loci of porous materials, Acta Mech. Sinica, Volume 5 (1989) no. 3, pp. 399-406

[5] V. Tvergaard Material failure by void growth to coalescence, Adv. Appl. Mech, Volume 27 (1990), pp. 83-151

[6] P. Ponte Castañeda Second-order homogenization estimates for nonlinear composites incorporating field fluctuations: I. Theory, J. Mech. Phys. Solids, Volume 50 (2002), pp. 735-757 II. Applications, J. Mech. Phys. Solids 50 (2002) 759–782

[7] Y.-P. Pellegrini Effective-medium theory for strongly nonlinear media, Phys. Rev. B, Volume 64 (2001), pp. 1-11

[8] P. Francescato; J. Pastor; T.-H. Thai Étude du critère de plasticité des matériaux poreux, C. R. Acad. Sci. Paris, Série IIb, Volume 329 (2001), pp. 753-760

[9] J.R. Rice; D.M. Tracey On the ductile enlargment of voids in triaxial stress fields, J. Mech. Phys. Solids, Volume 17 (1969), pp. 201-217

[10] G. Rousselier Ductile fracture models and their potential in local approach of fracture, Nuclear Engrg. Design, Volume 105 (1987), pp. 97-111

[11] Z. Hashin; S. Shtrikman A variational approach to the theory of the elastic behaviour of multiphase materials, J. Mech. Phys. Solids, Volume 11 (1963), pp. 127-140

[12] J.-B. Leblond; G. Perrin; P. Suquet Exact results and approximate models for porous viscoplastic solids, Internat. J. Plast, Volume 10 (1994) no. 3, pp. 213-235

[13] J. Pastor, Private communication

[14] D.C. Drucker The continuum theory of plasticity on the macroscale and the microscale, J. Mater, Volume 1 (1966), pp. 873-910

Cited by Sources:

Comments - Policy