Comptes Rendus
On a distributed derivative model of a viscoelastic body
Comptes Rendus. Mécanique, Volume 331 (2003) no. 10, pp. 687-692.

We study a viscoelastic body, in a linear stress state with fractional derivative type of dissipation. The model was formulated so that it takes into account, with a weighting factor, all derivatives of stress and strain between zero and one. We derive restrictions on the model that follow from Clausius–Duhem inequality. Several known constitutive equations are derived as special cases of the model proposed here. Two examples are discussed.

Nous étudions un corps viscoélastique dans un état de tension linéaire avec une sorte dissipation à la derivée fractionnelle. Le model a été formulé de façon à ce qu'il prenne en compte, avec le facteur de poids, toutes les derivées de la tension et des déformations entre zéro et un. Nous dérivons des restrictions posées sur le model qui suivent de l'inégalite de Clausius–Duhem. Plusieurs équations constitutives connues sont derivées comme les cas spéciaux du model proposé ici. Deux examples sont discutées.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2003.08.003
Keywords: Solids and structures, Fractional derivative
Mot clés : Solides et structures, Dérivé fractionnaire

Teodor M. Atanackovic 1

1 Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia and Montenegro
@article{CRMECA_2003__331_10_687_0,
     author = {Teodor M. Atanackovic},
     title = {On a distributed derivative model of a viscoelastic body},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {687--692},
     publisher = {Elsevier},
     volume = {331},
     number = {10},
     year = {2003},
     doi = {10.1016/j.crme.2003.08.003},
     language = {en},
}
TY  - JOUR
AU  - Teodor M. Atanackovic
TI  - On a distributed derivative model of a viscoelastic body
JO  - Comptes Rendus. Mécanique
PY  - 2003
SP  - 687
EP  - 692
VL  - 331
IS  - 10
PB  - Elsevier
DO  - 10.1016/j.crme.2003.08.003
LA  - en
ID  - CRMECA_2003__331_10_687_0
ER  - 
%0 Journal Article
%A Teodor M. Atanackovic
%T On a distributed derivative model of a viscoelastic body
%J Comptes Rendus. Mécanique
%D 2003
%P 687-692
%V 331
%N 10
%I Elsevier
%R 10.1016/j.crme.2003.08.003
%G en
%F CRMECA_2003__331_10_687_0
Teodor M. Atanackovic. On a distributed derivative model of a viscoelastic body. Comptes Rendus. Mécanique, Volume 331 (2003) no. 10, pp. 687-692. doi : 10.1016/j.crme.2003.08.003. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2003.08.003/

[1] T.M. Atanackovic A model for the uniaxial isothermal deformation of a viscoelastic body, Acta Mech., Volume 159 (2002), pp. 77-86

[2] S.G. Samko; A.A. Kilbas; O.I. Marichev Fractional Integrals and Derivatives, Gordon and Breach, Amsterdam, 1993

[3] R.L. Bagley; P.J. Torvik On the existence of the order domain and the solution of distributed order equations-part I, Int. J. Appl. Math., Volume 2 (2000), pp. 865-882

[4] R.L. Bagley; P.J. Torvik On the existence of the order domain and the solution of distributed order equations-part II, Int. J. Appl. Math., Volume 2 (2000), pp. 965-987

[5] M. Caputo Distributed order differential equations modelling dielectric induction and diffusion, Fractional Calculus & Appl. Analysis, Volume 4 (2001), pp. 421-442

[6] Yu. Rossikhin; M.V. Shitikova Analysis of dynamic behavior of viscoelastic rods whose rheological models contain fractional derivatives of two different orders, Z. Angew. Math. Mech. (ZAMM), Volume 81 (2001), pp. 363-376

[7] R.L. Bagley; P.J. Torvik On the fractional calculus model of viscoelastic behavior, J. Rheology, Volume 30 (1986), pp. 133-155

[8] T.M. Atanackovic A modified Zener model of a viscoelastic body, Continuum Mech. Thermodyn., Volume 14 (2002), pp. 137-148

[9] B. Stankovic; T.M. Atanackovic On a model of a viscoelastic rod, Fractional Calculus Appl. Anal., Volume 4 (2001), pp. 501-522

[10] B. Stankovic; T.M. Atanackovic Dynamics of a rod made of generalized Kelvin–Voigt visco-elastic material, J. Math. Anal. Appl., Volume 268 (2002), pp. 550-563

[11] T.M. Atanackovic; B. Stankovic Dynamics of a viscoelastic rod of fractional derivative type, Z. Angew. Math. Mech. (ZAMM), Volume 82 (2002), pp. 377-386

[12] Li Gen-guo; Zhu Zheng-you; Cheng Chang-jun Dynamical stability of viscoelastic column with fractional derivative constitutive relation, Appl. Math. Mech., Volume 22 (2001), pp. 294-303

[13] T. Pritz, Five-parameter fractional derivative model for polymeric damping materials, J. Sound Vibr., in press

[14] B. Stankovic, T.M. Atanackovic, On a viscoelastic rod with consitituive equation containing fractional derivatives of two different orders, Math. Mech. Solids, in press

Cited by Sources:

Comments - Policy