We study a viscoelastic body, in a linear stress state with fractional derivative type of dissipation. The model was formulated so that it takes into account, with a weighting factor, all derivatives of stress and strain between zero and one. We derive restrictions on the model that follow from Clausius–Duhem inequality. Several known constitutive equations are derived as special cases of the model proposed here. Two examples are discussed.
Nous étudions un corps viscoélastique dans un état de tension linéaire avec une sorte dissipation à la derivée fractionnelle. Le model a été formulé de façon à ce qu'il prenne en compte, avec le facteur de poids, toutes les derivées de la tension et des déformations entre zéro et un. Nous dérivons des restrictions posées sur le model qui suivent de l'inégalite de Clausius–Duhem. Plusieurs équations constitutives connues sont derivées comme les cas spéciaux du model proposé ici. Deux examples sont discutées.
Accepted:
Published online:
Mots-clés : Solides et structures, Dérivé fractionnaire
Teodor M. Atanackovic 1
@article{CRMECA_2003__331_10_687_0, author = {Teodor M. Atanackovic}, title = {On a distributed derivative model of a viscoelastic body}, journal = {Comptes Rendus. M\'ecanique}, pages = {687--692}, publisher = {Elsevier}, volume = {331}, number = {10}, year = {2003}, doi = {10.1016/j.crme.2003.08.003}, language = {en}, }
Teodor M. Atanackovic. On a distributed derivative model of a viscoelastic body. Comptes Rendus. Mécanique, Volume 331 (2003) no. 10, pp. 687-692. doi : 10.1016/j.crme.2003.08.003. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2003.08.003/
[1] A model for the uniaxial isothermal deformation of a viscoelastic body, Acta Mech., Volume 159 (2002), pp. 77-86
[2] Fractional Integrals and Derivatives, Gordon and Breach, Amsterdam, 1993
[3] On the existence of the order domain and the solution of distributed order equations-part I, Int. J. Appl. Math., Volume 2 (2000), pp. 865-882
[4] On the existence of the order domain and the solution of distributed order equations-part II, Int. J. Appl. Math., Volume 2 (2000), pp. 965-987
[5] Distributed order differential equations modelling dielectric induction and diffusion, Fractional Calculus & Appl. Analysis, Volume 4 (2001), pp. 421-442
[6] Analysis of dynamic behavior of viscoelastic rods whose rheological models contain fractional derivatives of two different orders, Z. Angew. Math. Mech. (ZAMM), Volume 81 (2001), pp. 363-376
[7] On the fractional calculus model of viscoelastic behavior, J. Rheology, Volume 30 (1986), pp. 133-155
[8] A modified Zener model of a viscoelastic body, Continuum Mech. Thermodyn., Volume 14 (2002), pp. 137-148
[9] On a model of a viscoelastic rod, Fractional Calculus Appl. Anal., Volume 4 (2001), pp. 501-522
[10] Dynamics of a rod made of generalized Kelvin–Voigt visco-elastic material, J. Math. Anal. Appl., Volume 268 (2002), pp. 550-563
[11] Dynamics of a viscoelastic rod of fractional derivative type, Z. Angew. Math. Mech. (ZAMM), Volume 82 (2002), pp. 377-386
[12] Dynamical stability of viscoelastic column with fractional derivative constitutive relation, Appl. Math. Mech., Volume 22 (2001), pp. 294-303
[13] T. Pritz, Five-parameter fractional derivative model for polymeric damping materials, J. Sound Vibr., in press
[14] B. Stankovic, T.M. Atanackovic, On a viscoelastic rod with consitituive equation containing fractional derivatives of two different orders, Math. Mech. Solids, in press
Cited by Sources:
Comments - Policy