We consider an elasticity problem in a domain , where is an open bounded domain in is a connected nonperiodic set in like a net of slender bars, and ε is a parameter characterizing the microstructure of the domain. We consider the case of a surface distribution of the set F(ε), i.e., for sufficiently small ε, the set F(ε) is concentrated in arbitrary small neighbourhood of a surface Γ. Under a hypothesis on the asymptotic behaviour of the energy functional, we obtain the macroscopic (homogenized) model.
On étudie un problème d'élasticité dans un domaine , où est un ouvert borné dans , F(ε) est un ensemble non-périodique connexe dans de type un réseau de barres fines et ε est un paramétre qui caractérise la microstructure du domaine. On considère le cas d'une distribution surfacique de l'ensemble F(ε), c'est-á-dire, lorsque ε→0, cet ensemble se concentre dans un voisinage d'une surface Γ aussi petit que l'on veut. Sous une hypothèse sur le comportement asymptotique de la fonctionelle d'énergie on obtient le modèle macroscopique (homogénéisé).
Accepted:
Published online:
Mot clés : Mécanique de solides numérique, Problème d'élasticité
Mariya Goncharenko 1, 2; Leonid Pankratov 1, 2
@article{CRMECA_2003__331_12_829_0, author = {Mariya Goncharenko and Leonid Pankratov}, title = {Homogenization of an elasticity problem in domains with a net of slender bars near surface}, journal = {Comptes Rendus. M\'ecanique}, pages = {829--834}, publisher = {Elsevier}, volume = {331}, number = {12}, year = {2003}, doi = {10.1016/j.crme.2003.09.005}, language = {en}, }
TY - JOUR AU - Mariya Goncharenko AU - Leonid Pankratov TI - Homogenization of an elasticity problem in domains with a net of slender bars near surface JO - Comptes Rendus. Mécanique PY - 2003 SP - 829 EP - 834 VL - 331 IS - 12 PB - Elsevier DO - 10.1016/j.crme.2003.09.005 LA - en ID - CRMECA_2003__331_12_829_0 ER -
Mariya Goncharenko; Leonid Pankratov. Homogenization of an elasticity problem in domains with a net of slender bars near surface. Comptes Rendus. Mécanique, Volume 331 (2003) no. 12, pp. 829-834. doi : 10.1016/j.crme.2003.09.005. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2003.09.005/
[1] Homogenization: Averaging Processes in Periodic Media, Kluwer, Dordrecht–Boston–London, 1989
[2] Homogenization of Reticulated Structures, Applied Mathematical Sciences, 136, Springer-Verlag, New York–Berlin–Heidelberg, 1999
[3] Boundary Value Problems in Domains with Fine-Grained Boundaries, Naukova Dumka, 1974 (in Russian)
[4] Nonhomogeneous Media and Vibration Theory, Lecture Notes in Phys., 127, Springer-Verlag, New York, 1980
Cited by Sources:
Comments - Politique