Starting from the relationship between the Bouc model and the endochronic theory and by adopting some new intrinsic time measures, the thermodynamic admissibility of the Bouc–Wen model is proved, in the univariate case as well as in the tensorial one. Moreover, the proposed proof encompasses the cases where a strength degradation term appears.
Partant de la relation entre le modèle de Bouc et la théorie endochronique et grâce à l'introduction de nouveaux temps internes, l'admissibilité thermodynamique du modèle de Bouc–Wen est prouvée, aussi bien dans le cas scalaire que dans le cas tensoriel. De plus, la preuve proposée s'applique également s'il y a un terme prenant en compte la dégradation de la force maximale.
Accepted:
Published online:
Mots-clés : Solides et structures, Thermodynamique, Hystérésis, Modèles de Bouc–Wen, Théorie endochronique, Ingénierie sismique
Silvano Erlicher 1, 2; Nelly Point 1, 3
@article{CRMECA_2004__332_1_51_0, author = {Silvano Erlicher and Nelly Point}, title = {Thermodynamic admissibility of {Bouc{\textendash}Wen} type hysteresis models}, journal = {Comptes Rendus. M\'ecanique}, pages = {51--57}, publisher = {Elsevier}, volume = {332}, number = {1}, year = {2004}, doi = {10.1016/j.crme.2003.10.009}, language = {en}, }
Silvano Erlicher; Nelly Point. Thermodynamic admissibility of Bouc–Wen type hysteresis models. Comptes Rendus. Mécanique, Volume 332 (2004) no. 1, pp. 51-57. doi : 10.1016/j.crme.2003.10.009. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2003.10.009/
[1] Modèle mathématique d'hystérésis, Acustica, Volume 24 (1971), pp. 16-25
[2] Method for random vibration of hysteretic systems, J. Eng. Mech. Div. ASCE, Volume 102 (1976), pp. 249-263
[3] Hysteretic models for deteriorating inelastic structures, J. Eng. Mech., Volume 126 (2000) no. 6, pp. 633-640
[4] S. Erlicher, Hysteretic degrading models for the low-cycle fatigue behaviour of structural elements: theory, numerical aspects and applications, Ph.D. Thesis, Department of Mechanical and Structural Engineering, University of Trento, Italy, 2003
[5] Stochastic dynamics of hysteretic media, Struct. Safety, Volume 6 (1989), pp. 259-269
[6] A thermodynamically consistent model for hysteretic materials, Iranian J. Sci. Tech., Volume 21 (1997) no. 3, pp. 257-278
[7] Hysteretic systems with internal variables, J. Eng. Mech., Volume 127 (2001) no. 9, pp. 891-898
[8] Etude dynamique d'un système d'isolation antisismique, Ann. ENIT, Volume 3 (1989) no. 1, pp. 43-60
[9] Random vibrations of hysteretic, degrading systems, J. Eng. Mech. Div. ASCE, Volume 107 (1981) no. 6, pp. 1069-1087
[10] A theory of viscoplasticity without a yield surface. Part I: general theory, Arch. Mech., Volume 23 (1971) no. 4, pp. 517-533
[11] Forced vibrations of a mechanical system with hysteresis, Proc. 4th Conf. on Nonlinear Oscillations, Prague, Czechoslovakia, 1967
[12] Mechanics of Porous Continua, Wiley, Chichester, 1995
[13] Endochronic inelasticity and incremental plasticity, Int. J. Solids Structures, Volume 14 (1978), pp. 691-714
Cited by Sources:
Comments - Policy