The existence and propagation of the surface waves at a vacuum/porous medium interface are investigated in the low frequency range. Two types of surface waves are shown to be possible: the generalized Rayleigh wave, which always exists, and the Stoneley wave, which exists for a limited range of wave numbers. Moreover, within the k-domain of existence the Stoneley wave cannot appear for certain values of elastic parameters of the solid phase. The bifurcation behavior of both the Stoneley wave and the Biot (P2) bulk wave, depending on the wave number, is revealed. The asymptotic formulas for the phase velocities of the surface waves are derived.
La nature et la propagation des ondes de surface engendrées par la surface libre d'un milieu poreux sont étudiées en basse fréquence : nous mettons en évidence deux types d'ondes de surface : l'onde de Rayleigh et l'onde de Stoneley. Cette dernière existe pour une gamme limitée de nombres d'onde. Le comportement de bifurcation de l'onde de Stoneley et de l'onde lente de Biot (P2) dépendant du nombre d'onde est mis en évidence. Il est aussi prouvé qu'à l'intérieur du domaine d'existence du nombre d'onde, l'onde de Stoneley ne peut pas apparaı̂tre pour certaines valeurs de paramètres élastiques de la phase solide. Les formules asymptotiques des vitesses de phase des ondes de surface sont également présentées.
Accepted:
Published online:
Mots-clés : Milieux poreux, Ondes, Analyse asymptotique, Bifurcation, Interface
Inna Edelman 1
@article{CRMECA_2004__332_1_43_0, author = {Inna Edelman}, title = {On the existence of the low-frequency surface waves in a porous medium}, journal = {Comptes Rendus. M\'ecanique}, pages = {43--49}, publisher = {Elsevier}, volume = {332}, number = {1}, year = {2004}, doi = {10.1016/j.crme.2003.11.004}, language = {en}, }
Inna Edelman. On the existence of the low-frequency surface waves in a porous medium. Comptes Rendus. Mécanique, Volume 332 (2004) no. 1, pp. 43-49. doi : 10.1016/j.crme.2003.11.004. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2003.11.004/
[1] On waves propagated along the plane surface of an elastic solid, Proc. London Math. Soc., Volume 17 (1885), pp. 4-11
[2] Elastic waves at the surface of separation of two solids, Proc. Roy. Soc. London Ser. A, Volume 106 (1924), pp. 416-428
[3] Waves in Layered Media, Academic Press, New York, 1960
[4] Acoustics and ultrasonics, Experimental Methods in the Physical Sciences, Academic Press, 1999, pp. 161-221
[5] Asymptotic analysis of surface waves at vacuum/porous medium and liquid/porous medium interfaces, Continuum Mech. Thermodyn., Volume 14 (2002) no. 1, pp. 25-44
[6] Mechanics of deformation and acoustic propagation in porous media, J. Appl. Phys., Volume 33 (1962) no. 4, pp. 1482-1498
[7] Lagrangean model of two-phase porous material, J. Non-Equilib. Thermodyn., Volume 20 (1995), pp. 50-77
[8] Bifurcation of the Biot slow wave in a porous medium, J. Acoust. Soc. Am., Volume 114 (2002) no. 1, pp. 90-97
[9] Waves on boundaries of porous media, Phys. Dokl., Volume 46 (2001), pp. 517-521
[10] I. Edelman, On the bifurcation of the Biot slow wave in a porous medium, WIAS, Preprint 738 (2002).2
Cited by Sources:
Comments - Policy