The aim of this contribution is to derive minimum principles for quasi-linear linear transport (heat) equations in the steady and nonstationary case. Application to currently used nonstationary bioheat equations is sketched.
Le but de la contribution est de donner des principes de minimum pour l'equation du transport (de la chaleur) quasi lineéaire dans le cas stationaire et non stationaire. L'application aux équations de la chaleur, couramment utilisées en biomécanique est esquisée.
Accepted:
Published online:
Mots-clés : Transferts thermiques, Biomécanique, Cas stationnaire et non stationnaire, Principes de minimum, Equations de la chaleur en biomécanique
Józef Joachim Telega 1; Maciej Stańczyk 1
@article{CRMECA_2004__332_4_263_0, author = {J\'ozef Joachim Telega and Maciej Sta\'nczyk}, title = {General minimum principles for quasilinear transport and bioheat equations}, journal = {Comptes Rendus. M\'ecanique}, pages = {263--269}, publisher = {Elsevier}, volume = {332}, number = {4}, year = {2004}, doi = {10.1016/j.crme.2004.02.012}, language = {en}, }
TY - JOUR AU - Józef Joachim Telega AU - Maciej Stańczyk TI - General minimum principles for quasilinear transport and bioheat equations JO - Comptes Rendus. Mécanique PY - 2004 SP - 263 EP - 269 VL - 332 IS - 4 PB - Elsevier DO - 10.1016/j.crme.2004.02.012 LA - en ID - CRMECA_2004__332_4_263_0 ER -
Józef Joachim Telega; Maciej Stańczyk. General minimum principles for quasilinear transport and bioheat equations. Comptes Rendus. Mécanique, Volume 332 (2004) no. 4, pp. 263-269. doi : 10.1016/j.crme.2004.02.012. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2004.02.012/
[1] Un principe variationel associé à certaines équations paraboliques. Le cas indépendant du temps, C. R. Acad. Sci. Paris, Sér. A, Volume 282 (1976), pp. 971-974
[2] Un principe variationel associé à certaines équations paraboliques. Le cas dépendant du temps, C. R. Acad. Sci. Paris, Sér. A, Volume 282 (1976), pp. 1197-1198
[3] Variational principles for operator equations and initial value problems, Nonlinear Anal., Volume 12 (1988), pp. 531-564
[4] Extremum principles for nonpotential and initial-value problems, Arch. Mech., Volume 54 (2002), pp. 663-690
[5] Convex Analysis and Variational Problems, North-Holland, Amsterdam, 1976
[6] Nonlinear transport equation and macroscopic properties of microheterogeneous media, Arch. Mech., Volume 49 (1997), pp. 293-319
[7] Variational Analysis, Springer, Berlin, 1998
[8] M. Stańczyk, Modelling of PMMA cement polymerisation, J. Biomech. (2004), in press
[9] Modelling of heat transfer in biomechanics – a review. Part I. Soft tissues, Acta Bioeng. Biomech., Volume 4 (2002), pp. 31-61
[10] Analysis of tissue and arterial blood temperatures in the resting human forearm, J. Appl. Physiol., Volume 1 (1948), pp. 93-122
[11] Pennes' 1948 paper revisited, J. Appl. Physiol., Volume 85 (1998), pp. 35-41
[12] The energy conservation equation for living tissue, IEEE Trans. Biomed. Engrg., Volume 21 (1974), pp. 494-495
[13] A new simplified bioheat equation for the effect of the local blood flow on local average tissue temperature, J. Biomech. Engrg., Volume 107 (1985), pp. 131-139
[14] On the solution of the nonlinear bioheat equation, J. Biomech., Volume 23 (1990), pp. 791-798
[15] Thermal problems in artificial joints: influence of bone cement polymerisation, Acta Bioeng. Biomech., Volume 3 (2001), pp. 489-496
[16] Modelling of heat transfer phenomena during cementation of femoral prosthesis, Acta Bioeng. Biomech., Volume 4 (2002), pp. 247-248
Cited by Sources:
Comments - Policy