Comptes Rendus
Symmetry-breaking in periodic gravity waves with weak surface tension and gravity-capillary waves on deep water
Comptes Rendus. Mécanique, Volume 332 (2004) no. 7, pp. 565-570.

The method developed by Debiane and Kharif for the calculation of symmetric gravity-capillary waves on infinite depth is extended to the general case of non-symmetric solutions. We have calculated non-symmetric steady periodic gravity-capillary waves on deep water. It is found that they appear via bifurcations from a family of symmetric waves. On the other hand we found that the symmetry-breaking bifurcation of periodic steady class 1 gravity wave on deep water is possible when it approaches the limiting profile, if it is very weakly influenced by surface tension effects.

La méthode développée par Debiane et Kharif pour le calcul des ondes de gravité-capillarité symétriques en profondeur infinie a été étendue aux cas de vagues à profils non-symétriques. Nous avons calculé des ondes de gravité-capillarité non-symétriques périodiques et de formes permanentes. Elles apparaissent via des bifurcations à partir d'une solution symétrique. D'autre part, nous avons trouvé qu'en présence d'une très faible tension de surface, la brisure de symétrie d'une onde de gravité périodique de classe 1 en profondeur infinie est possible à l'approche de sa forme limite.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2004.03.003
Keywords: Fluid mechanics, Water waves, Bifurcation, Symmetry-breaking, Infinite depth
Mots-clés : Mécanique des fluides, Vagues, Bifurcation, Brisure de symétrie, Profondeur infinie

Rabah Aider 1; Mohammed Debiane 1

1 U.S.T.H.B, faculté de physique, BP 32, El Alia 16111, Bab Ezzouar, Alger, Algeria
@article{CRMECA_2004__332_7_565_0,
     author = {Rabah Aider and Mohammed Debiane},
     title = {Symmetry-breaking in periodic gravity waves with weak surface tension and gravity-capillary waves on deep water},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {565--570},
     publisher = {Elsevier},
     volume = {332},
     number = {7},
     year = {2004},
     doi = {10.1016/j.crme.2004.03.003},
     language = {en},
}
TY  - JOUR
AU  - Rabah Aider
AU  - Mohammed Debiane
TI  - Symmetry-breaking in periodic gravity waves with weak surface tension and gravity-capillary waves on deep water
JO  - Comptes Rendus. Mécanique
PY  - 2004
SP  - 565
EP  - 570
VL  - 332
IS  - 7
PB  - Elsevier
DO  - 10.1016/j.crme.2004.03.003
LA  - en
ID  - CRMECA_2004__332_7_565_0
ER  - 
%0 Journal Article
%A Rabah Aider
%A Mohammed Debiane
%T Symmetry-breaking in periodic gravity waves with weak surface tension and gravity-capillary waves on deep water
%J Comptes Rendus. Mécanique
%D 2004
%P 565-570
%V 332
%N 7
%I Elsevier
%R 10.1016/j.crme.2004.03.003
%G en
%F CRMECA_2004__332_7_565_0
Rabah Aider; Mohammed Debiane. Symmetry-breaking in periodic gravity waves with weak surface tension and gravity-capillary waves on deep water. Comptes Rendus. Mécanique, Volume 332 (2004) no. 7, pp. 565-570. doi : 10.1016/j.crme.2004.03.003. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2004.03.003/

[1] T. Levi-Cevita Détermination rigoureuse des ondes permanentes d'ampleur finie, Math. Ann., Volume 93 (1925), pp. 264-314

[2] G.G. Stokes On the theory of oscillatory waves, Trans. Cambridge Philos. Soc., Volume 8 (1847), pp. 441-455

[3] M.S. Longuet-Higgins The bifurcation in gravity waves, J. Fluid Mech., Volume 151 (1985), pp. 457-475

[4] B. Chen; P.G. Saffman Numerical evidence for the existence of new type of gravity waves of permanent form on deep water, Stud. Appl. Math., Volume 62 (1980), pp. 1-21

[5] J.A. Zufiria Non-symmetric gravity waves on water of infinite depth, J. Fluid Mech., Volume 181 (1987), pp. 17-39

[6] M.S. Longuet-Higgins New integral relations for gravity waves of finite amplitude, J. Fluid Mech., Volume 149 (1984), pp. 457-475

[7] M. Debiane; C. Kharif A new way for the calculation of steady periodic capillary-gravity waves on deep water, Eur. J. Mech. B Fluids, Volume 16 (1997), pp. 257-275

[8] H.B. Keller Numerical solution of bifurcation and nonlinear eigenvalue problems, Application of Bifurcation Theory, Academic Press, 1977, pp. 359-384

[9] M. Debiane; C. Kharif A new limiting form for steady periodic gravity waves with surface tension on deep water, Phys. Fluids, Volume 8 (1996), pp. 2780-2782

Cited by Sources:

Comments - Policy