The method of electron-beam fluorescence is applied to study the evolution of natural and artificial periodic disturbances on a developed streaky structure in the shock layer on a circular compression surface model. The model is exposed to a hypersonic nitrogen flow with a Mach number M∞=21 and unit Reynolds number Re1∞=6×105 m−1. Data on the effect of surface curvature and temperature on disturbance characteristics are obtained.
La méthode de fluorescence par faisceau électronique a été appliqueé pour rechercher l'evolution de perturbations naturelles et artificielles sur une structure longitudinale développée dans la couche de choc du modéle d'une surface á rayon de compression. L'écoulement d'azote autour du modèle est hypersonique avec nombre de Mach M∞=21 et nombre de Reynolds unitaire Re1∞=6×105 m−1. Les données sont obtenues sur l'influence de courbure et temperature de surface sur les charactéristiques de perturbations.
Accepted:
Published online:
Mots-clés : Mécanique des fluides, Écoulement hypersonique, Couche de choc, Instabilité hydrodynamique
Sergey G. Mironov 1; Vladimir M. Aniskin 1
@article{CRMECA_2004__332_9_701_0, author = {Sergey G. Mironov and Vladimir M. Aniskin}, title = {Experimental study of a hypersonic shock layer stability on a circular surface of compression}, journal = {Comptes Rendus. M\'ecanique}, pages = {701--708}, publisher = {Elsevier}, volume = {332}, number = {9}, year = {2004}, doi = {10.1016/j.crme.2004.04.007}, language = {en}, }
TY - JOUR AU - Sergey G. Mironov AU - Vladimir M. Aniskin TI - Experimental study of a hypersonic shock layer stability on a circular surface of compression JO - Comptes Rendus. Mécanique PY - 2004 SP - 701 EP - 708 VL - 332 IS - 9 PB - Elsevier DO - 10.1016/j.crme.2004.04.007 LA - en ID - CRMECA_2004__332_9_701_0 ER -
Sergey G. Mironov; Vladimir M. Aniskin. Experimental study of a hypersonic shock layer stability on a circular surface of compression. Comptes Rendus. Mécanique, Volume 332 (2004) no. 9, pp. 701-708. doi : 10.1016/j.crme.2004.04.007. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2004.04.007/
[1] Experimental investigation of the hypersonic low-density flow past a half-closed cylindrical cavity, Fluid Dynamics, Volume 31 (1996), pp. 928-932
[2] Experimental study of secondary instability in a hypersonic shock layer on a flat plate, J. Fluid Mech., Volume 412 (2000), pp. 259-277
[3] An experimental study of density waves in hypersonic shock layer on a flat plate, Phys. Fluids A, Volume 12 (2000), pp. 1544-1553
[4] Preliminary measurements of the hypersonic rarefied flow field on a sharp plate using electron beam probe (C.L. Brundin, ed.), Rarefied Gas Dynamics, Academic Press, New York, 1967, pp. 1031-1046 (Suppl. 2)
[5] Evolution of controlled disturbances in the shock layer on the compression surface, J. Appl. Mech. Tech. Phys., Volume 44 (2003), pp. 635-639
[6] Görtler instability of compressible boundary layers, AIAA J., Volume 22 (1984), pp. 1354-1355
[7] Goertler vortices in supersonic and hypersonic boundary layers, Phys. Fluids A, Volume 1 (1989), pp. 1822-1835
[8] Görtler-type vortices in hypersonic flows: the ramp problem, Exp. Therm. Fluid Sci., Volume 15 (1997), pp. 69-81
[9] D.A. Needham, J.L. Stollery, Boundary layer separation in hypersonic flow, AIAA Paper, No 66-455, 1966
[10] Development of periodic disturbances on a streaky structure in the hypersonic shock layer on surface of compression, Thermophys. Aeromech., Volume 11 (2004), pp. 35-42
Cited by Sources:
Comments - Policy