Comptes Rendus
Espaces d'écoulements dits « universels », 3
Comptes Rendus. Mécanique, Volume 332 (2004) no. 12, pp. 1019-1025.

Les mouvements premiers à vorticité stationnaire uniforme composent une corolle d'espaces vectoriels isomorphes dérivés des déplacements solides ou des écoulements de Couette. Proches cadets des écoulements potentiels, ils vérifient deux extensions du théorème de Lagrange, s'étudient à l'aide des fonctions holomorphes, et sont célèbres quand ils sont plans. Ils interviennent en hydrodynamique, aérodynamique, géophysique, astrophysique, turbulence, physiques des plasmas et de l'hélium superfluide. À chaque fois, des translations transversales non stationnaires arbitraires permettent de générer des mouvements premiers tridimensionnels complexes. Trois écoulements périodiques méconnus servent d'illustration, et approchent l'instabilité de cisaillement dans pléthore de fluides.

Universal motions with uniform steady vorticity form a corolla of linear spaces derived from rigid body motions. Closely related to potential flows, they satisfy two extensions of Lagrange theorem, are investigated with the help of complex functions, as stand celebrated when be plane. They take place in hydrodynamics, aerodynamics, geophysics, astrophysics, turbulence, physics of plasmas and superfluid helium. In all the cases, arbitrary unsteady span-wise translations permit to generalise as well as to exhibit helical or 3D universal motions. Three misunderstood periodic flows illustrate our purpose, as they approach shear instabilities in numerous fluids.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2004.05.004
Mot clés : Génie des matériaux, Poches tourbillonnaires de Batchelor, Kirchhoff, Rankine, Couches critiques viscoélastiques, Ondes de Tollmien–Schlichting
Keywords: Material engineering, Rankine, Kirchhoff and Batchelor's vortex patches, Visco-elastic critical layers, Tollmien–Schlichting waves
Michel Bouthier 1

1 Laboratoire de modélisation en mécanique, UPMC, tour 65, 4, place Jussieu, 75252 Paris, France
@article{CRMECA_2004__332_12_1019_0,
     author = {Michel Bouthier},
     title = {Espaces d'\'ecoulements dits {\guillemotleft} universels {\guillemotright}, 3},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {1019--1025},
     publisher = {Elsevier},
     volume = {332},
     number = {12},
     year = {2004},
     doi = {10.1016/j.crme.2004.05.004},
     language = {fr},
}
TY  - JOUR
AU  - Michel Bouthier
TI  - Espaces d'écoulements dits « universels », 3
JO  - Comptes Rendus. Mécanique
PY  - 2004
SP  - 1019
EP  - 1025
VL  - 332
IS  - 12
PB  - Elsevier
DO  - 10.1016/j.crme.2004.05.004
LA  - fr
ID  - CRMECA_2004__332_12_1019_0
ER  - 
%0 Journal Article
%A Michel Bouthier
%T Espaces d'écoulements dits « universels », 3
%J Comptes Rendus. Mécanique
%D 2004
%P 1019-1025
%V 332
%N 12
%I Elsevier
%R 10.1016/j.crme.2004.05.004
%G fr
%F CRMECA_2004__332_12_1019_0
Michel Bouthier. Espaces d'écoulements dits « universels », 3. Comptes Rendus. Mécanique, Volume 332 (2004) no. 12, pp. 1019-1025. doi : 10.1016/j.crme.2004.05.004. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2004.05.004/

[1] M. Bouthier; M. Bouthier Espaces d'écoulements dits « universels », Part 2, C. R. Mécanique, Volume 331 (2003), pp. 165-172 Section 4, Éq. (12) ; Section 1, Eq. (3) Section 1

[2] C. Eloy; S. Le Dizès Stability of the Rankine vortex in a multipolar strain field, Phys. Fluids, Volume 13 (2001) no. 3, pp. 660-676 Eq. (1.1a)

[3] G.F. Carnevale; R.C. Kloosterziel Emergence and evolution of triangular vortices, J. Fluid Mech., Volume 259 (1994), pp. 305-331

[4] H.S. Tsien Symmetrical Joukowsky airfoils in shear flow, Quart. Appl. Math., Volume 1 (1943), pp. 130-148

[5] C.Y. Wang Exact solutions of the Navier–Stokes equations – the generalized Beltrami flows, review and extension, Acta Mech., Volume 81 (1990), pp. 69-74 Source or vortex in shear flow, Eqs. (12)–(13); Shear flow over convection cells, Eq. (14)

[6] L.M. Milne-Thomson Theoretical Aerodynamics, 1966 (reedited by Dover, New York, 1973; Section 5-72, Uniform shear flow; Section 5-73, Circular cylinder in uniform shear flow; pp. 93–95; Section 13-13, Rankine's combined vortex, pp. 355–356; Section 13-71, Single infinite row, p. 375; Examples XIII 24, 26, p. 389)

[7] J. Obala Sur les écoulements de cisaillement à tourbillon constant autour d'un profil animé d'un mouvement quelconque, J. Mec., Volume 13 (1974), pp. 1-30

[8] D.J. Hill; P.G. Saffman Counter-rotating vortex patches in shear: a model of the effect of wind shear on aircraft trailing vortices, Proc. R. Soc. London Ser. A, Volume 458 (2002), pp. 1527-1553

[9] G.K. Batchelor An Introduction to Fluid Dynamics, Cambridge Math. Lib., Cambridge University Press, Cambridge, UK, 2000 (Section 7.4, Steady two-dimensional flow with vorticity throughout the fluid, pp. 538–543)

[10] H.P. Greenspan The Theory of Rotating Fluids, Cambridge University Press, Cambridge, UK, 1968 (Section 1.1, A few experiments, pp. 1–5)

[11] P.G. Saffman Vortex Dynamics, Dover, 1997 (Chapter 9, Dynamics of two-dimensional vortex patches, pp. 160–191)

[12] H. Villat Théorie des tourbillons, Gauthiers, Villars, Paris, 1930 (Chapiter VIII, Tourbillons de dimensions finies. Le tourbillon elliptique de Kirchhoff, pp. 187–198)

[13] K. Batchelor A proposal concerning laminar wakes behind bluff bodies at large Reynolds number, J. Fluid Mech., Volume 1 (1956), pp. 388-398

[14] D.W. Moore; P.G. Saffman; S. Tanver The calculation of some Batchelor flows: The Sadovskii vortex and rotational corner flow, Phys. Fluids, Volume 31 (1988) no. 5, pp. 978-990

[15] Y.G. Morel; X.J. Carton Multipolar vortices in two-dimensional incompressible flows, J. Fluid Mech., Volume 267 (1994), pp. 23-51

[16] D. Crowdy Multipolar vortices and algebraic curves, Proc. R. Soc. London Ser. A, Volume 457 (2001), pp. 2337-2359

[17] S. Kida Motion of an elliptic vortex in a uniform shear flow, J. Phys. Soc. Japan, Volume 50 (1981), pp. 3517-3520

[18] D.A. Schecter; D.H. Dubin; K.S. Fine; C.F. Driscoll Vortex crystals from 2D Euler flow: experimentation and simulation, Phys. Fluids, Volume 11 (1999), pp. 905-914

[19] D.Z. Jin; E. Dubinh Point vortex dynamics within a background vorticity patch, Phys. Fluids, Volume 13 (2001) no. 3, pp. 677-691

[20] D.G. Crowdy Exact solutions for rotating vortex arrays with finite-area cores, J. Fluid Mech., Volume 469 (2002), pp. 209-235

[21] J.C. Neu The dynamics of a columnar vortex in an imposed strain, Phys. Fluids, Volume 27 (1984), pp. 2397-2402

[22] I. Lansky; T. O'Neil Stability analysis of a two-dimensional vortex pattern, Phys. Rev. E, Volume 55 (1997) no. 6, pp. 7010-7014

[23] Drazin; W.H. Reid Hydrodynamic Stability, Cambridge University Press, Cambridge, UK, 1981 (Fig. 4.3, p. 141)

[24] S.A. Maslowe Critical layers in shear flows, Annu. Rev. Fluid Mech., Volume 18 (1986), pp. 405-432 (Fig. 2, p. 411)

[25] C.Y. Wang Shear flow over convection cells-an exact solution of the Navier–Stokes equations, Z. Angew. Math. Mech., Volume 70 (1990) no. 8, pp. 351-352

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Espaces d'écoulements dits « universels », suite 2

Michel Bouthier

C. R. Méca (2004)


Espaces d'écoulements dits « universels »

Michel Bouthier

C. R. Méca (2003)


Various aspects of fluid vortices

Ivan Delbende; Thomas Gomez; Christophe Josserand; ...

C. R. Méca (2004)