NaCl-water saturated kaolinite is observed to show pH-dependent electro-osmotic flow. This behaviour is modelled by computing the electro-osmotic flow between parallel planes as a function of their electrical surface charge density. The latter can be related to pH through the physico-chemical properties of the material. In case of kaolinite particles, isomorphic substitution and two surface dissociation reactions allow to predict the pH-dependence of the electrical charge density and thus the variations of electro-osmotic flows with pH.
On étudie l'écoulement électro-osmotique entre deux plaques en fonction de la densité de charge qu'elles portent. Par ailleurs, une modélisation des réactions de dissociation en surface du cristal de kaolinite permet de représenter la variation de cette densité de charge avec le pH. Ces résultats combinés permettent de modéliser les variations des flux électro-osmotiques avec le pH.
Accepted:
Published online:
Mots-clés : Milieux poreux, Électro-osmose, Kaolinite, Colloïde, Densité de charge, pH
Patrick Dangla 1; Teddy Fen-Chong 1; Fabien Gaulard 1
@article{CRMECA_2004__332_11_915_0, author = {Patrick Dangla and Teddy Fen-Chong and Fabien Gaulard}, title = {Modelling of {pH-dependent} electro-osmotic flows}, journal = {Comptes Rendus. M\'ecanique}, pages = {915--920}, publisher = {Elsevier}, volume = {332}, number = {11}, year = {2004}, doi = {10.1016/j.crme.2004.07.008}, language = {en}, }
Patrick Dangla; Teddy Fen-Chong; Fabien Gaulard. Modelling of pH-dependent electro-osmotic flows. Comptes Rendus. Mécanique, Volume 332 (2004) no. 11, pp. 915-920. doi : 10.1016/j.crme.2004.07.008. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2004.07.008/
[1] Electrokinetic flow in a narrow cylindrical capillary, J. Phys. Chem., Volume 69 (1965) no. 11, pp. 4017-4024
[2] Foundations of Colloid Science, Oxford University Press, 1986
[3] An Introduction to Clay Colloid Chemistry, Krieger Publishing Company, Malabar, FL, 1991
[4] Fondamentals of Soil Behavior, Wiley, 1993
[5] The chemical constitution of clays (A.C.D. Newman, ed.), Chemistry of Clays and Clay Minerals, Mineral. Soc. Monogr., vol. 6, 1987, pp. 1-128
[6] Kennzeichnung submikroskopisher grenzflachachenbereiche verschiedener wirksamkeit, Z. Anorg. Chem., Volume 253 (1947), pp. 161-169
[7] Mechanism of kaolinite dissolution at room temperature and pressure: Part 1. Surface speciation, Geochim. Cosmochim. Acta, Volume 62 (1998) no. 3, pp. 417-431
[8] Aqueous surface chemistry of oxides and complex oxide minerals. Isoelectric point and zero point of charge, Equilibrium Concepts in Natural Water Systems, Advances Chem. Ser., vol. 67, Amer. Chem. Soc., Washington, DC, 1967, pp. 121-160
[9] Origin of pore water pressure gradient in electro-osmosed saturated kaolinite: experimental and theoretical study (J. Auriault et al., eds.), Poromechanics II, Balkema, 2002
Cited by Sources:
Comments - Policy