[On the closure of rapid terms for rotational mean flows]
For small times following the distortion of an isotropic state, rapid-distortion theory provides the tensorial form of one-point correlation expansions for homogeneous rotational turbulent mean flows. It is considered that the consistency with such expansions must be satisfied by any closure model. The Note describes the general structure of these expansions as well as some of their properties. It is shown how cumulated effects (strain and rotation) are involved.
A petits temps suivant la distorsion d'un état isotrope, la théorie de distorsion rapide fournit la forme tensorielle des développements des grandeurs turbulentes en un point pour les écoulements turbulents homogènes rotationnels en moyenne. Il est considéré que la consistance avec de tels développements doit être assurée pour tout modèle de fermeture. La note décrit la structure générale de ces développements et examine certaines de leurs propriétés. Il est montré comment les effets cumulés (de déformation et de rotation) sont mis en jeu.
Accepted:
Published online:
Keywords: Fluid mechanics, Turbulence, Realisability, Pressure-strain
Jean Piquet 1
@article{CRMECA_2005__333_3_257_0, author = {Jean Piquet}, title = {Structure des d\'eveloppements de distorsion rapide \`a petits temps en turbulence homog\`ene}, journal = {Comptes Rendus. M\'ecanique}, pages = {257--263}, publisher = {Elsevier}, volume = {333}, number = {3}, year = {2005}, doi = {10.1016/j.crme.2004.11.004}, language = {fr}, }
Jean Piquet. Structure des développements de distorsion rapide à petits temps en turbulence homogène. Comptes Rendus. Mécanique, Volume 333 (2005) no. 3, pp. 257-263. doi : 10.1016/j.crme.2004.11.004. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2004.11.004/
[1] Rapid distorsion theory as a means of exploring the structure of turbulence (L. Sirovich, ed.), New Perspectives in Turbulence, Springer-Verlag, 1991, pp. 55-103 (Chapter 2)
[2] The Structure of Turbulent Shear Flow, Cambridge University Press, 1976
[3] An analysis of rotating shear flow using linear theory and DNS and LES results, J. Fluid Mech., Volume 347 (1997), pp. 171-195
[4] Useful formulas in the rapid distorsion theory of homogeneous turbulence, Phys. Fluids, Volume 29 (1986), pp. 3471-3474
[5] Distorsion of homogeneous turbulence by axisymmetric strain and dilatation, Phys. Fluids A, Volume 1 (1989), pp. 1541-1557
[6] A contribution toward rational modelling of the pressure-strain rate correlation, Phys. Fluids A, Volume 2 (1990), pp. 630-633
[7] Fundamentals of turbulence for turbulence modelling and simulation, Special Course on Modern Theoretical and Experimental Approaches to Turbulence Structure and Modelling, 1987, pp. 1-66 (AGARD-R-755)
[8] Turbulent Flows, Models and Physics, Springer-Verlag, Berlin, 1999
[9] Stability analysis and large-eddy simulation of rotating turbulence with organized eddies, J. Fluid Mech., Volume 278 (1994), pp. 175-200
[10] Scaling laws for homogeneous turbulent shear flow in a rotating frame, Phys. Fluids A, Volume 1 (1989), pp. 99-164
[11] The structure of a passive scalar field with a uniform mean gradient in rapidly sheared homogeneous flow, Phys. Fluids A, Volume 3 (1991), pp. 144-154
[12] Vortical structure in rotating uniformly sheared turbulence, Flow, Turb. & Combust., Volume 60 (1998), pp. 301-331
[13] S.C. Kassinos, W.C. Reynolds, A structure-based model for the rapid distorsion of homogeneous turbulence. Report TF 61, Thermosciences Division, Department Mech. Engineering, Stanford University, 1994
[14] One-point turbulence structure tensors, J. Fluid Mech., Volume 428 (2001), pp. 213-248
[15] L'équation de la stropholyse, C. R. Mécanique, Volume 331 (2003), pp. 569-574
[16] Computational modeling of turbulent flows, Adv. Appl. Mech., Volume 18 (1978), pp. 123-176
[17] Modélisation du tenseur des corrélations pression-déformation par une équation de transport, C. R. Acad. Sci. Paris, Ser. IIb, Volume 21 (1995), pp. 325-330
Cited by Sources:
Comments - Policy