Comptes Rendus
Settling motion of interacting solid particles in the vicinity of a plane solid boundary
Comptes Rendus. Mécanique, Volume 333 (2005) no. 5, pp. 413-418.

The sedimentation of N1 small arbitrarily-shaped solid bodies near a solid plane is addressed by discarding inertial effects and using 6N boundary-integral equations. Numerical results for 2 or 3 identical spheres reveal that combined wall–particle and particle–particle interactions deeply depend on the cluster's geometry and distance to the wall and may even cancel for a sphere which then moves as it were isolated.

La sédimentation en régime de Stokes de N1 corps solides quelconques situés près d'une paroi plane est étudiée à l'aide de 6N équations de frontière. Les résultats pour 2 ou 3 sphères identiques montrent que la résultante des intéractions particule-particule et paroi-particule est très sensible à la disposition des sphères et peut même s'annuler pour l'une d'elles qui dans ce cas migre comme si elle était seule.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2005.02.008
Keywords: Fluid mechanics, Sedimentation, Particle–particle interactions, Wall–particle interactions, Boundary elements
Mot clés : Mécanique des fluides, Sédimentation, Interactions particule-particule, Interactions particule-paroi, Eléments de frontière

Antoine Sellier 1

1 LadHyX, École polytechnique, 91128 Palaiseau cedex, France
@article{CRMECA_2005__333_5_413_0,
     author = {Antoine Sellier},
     title = {Settling motion of interacting solid particles in the vicinity of a plane solid boundary},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {413--418},
     publisher = {Elsevier},
     volume = {333},
     number = {5},
     year = {2005},
     doi = {10.1016/j.crme.2005.02.008},
     language = {en},
}
TY  - JOUR
AU  - Antoine Sellier
TI  - Settling motion of interacting solid particles in the vicinity of a plane solid boundary
JO  - Comptes Rendus. Mécanique
PY  - 2005
SP  - 413
EP  - 418
VL  - 333
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crme.2005.02.008
LA  - en
ID  - CRMECA_2005__333_5_413_0
ER  - 
%0 Journal Article
%A Antoine Sellier
%T Settling motion of interacting solid particles in the vicinity of a plane solid boundary
%J Comptes Rendus. Mécanique
%D 2005
%P 413-418
%V 333
%N 5
%I Elsevier
%R 10.1016/j.crme.2005.02.008
%G en
%F CRMECA_2005__333_5_413_0
Antoine Sellier. Settling motion of interacting solid particles in the vicinity of a plane solid boundary. Comptes Rendus. Mécanique, Volume 333 (2005) no. 5, pp. 413-418. doi : 10.1016/j.crme.2005.02.008. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2005.02.008/

[1] A. Sellier On the slow gravity-driven migration of arbitrary clusters of small solid particles, C. R. Mécanique, Volume 332 (2004) no. 12, pp. 987-992

[2] R. Hsu; P. Ganatos The motion of a rigid body in viscous fluid bounded by a plane wall, J. Fluid Mech., Volume 207 (1989), pp. 29-72

[3] L. Elasmi; M. Berzig; F. Feuillebois Stokes flow for the axisymmetric motion of several spherical particles perpendicular to a plane wall, Z. Angew. Math. Phys., Volume 54 (2003), pp. 1-24

[4] R. Hsu; P. Ganatos Gravitational and zero-drag motion of a spheroid adjacent to an inclined plane at low Reynolds number, J. Fluid Mech., Volume 268 (1994), pp. 267-292

[5] J.R. Blake A note on the image system for a Stokeslet in a no-slip boundary, Proc. Cambridge Philos. Soc., Volume 70 (1971), pp. 303-310

[6] J. Happel; H. Brenner Low Reynolds Number Hydrodynamics, Martinus Nijhoff, 1973

[7] C. Pozrikidis Boundary Integral and Singularity Methods for Linearized Viscous Flow, Cambridge University Press, 1992

[8] E. Gavze; M. Shapiro Particles in a shear flow near a solid wall: effect of nonsphericity on forces and velocities, Int. J. Multiphase Flow, Volume 23 (1997) no. 1, pp. 155-182

[9] M. Bonnet Boundary Integral Equation Methods for Solids and Fluids, Wiley, 1999

[10] M. Chaoui; F. Feuillebois Creeping flow around a sphere in shear flow close to a wall, Q. J. Mech. Appl. Math., Volume 56 (2003), pp. 381-410

Cited by Sources:

Comments - Policy