The sedimentation of small arbitrarily-shaped solid bodies near a solid plane is addressed by discarding inertial effects and using 6N boundary-integral equations. Numerical results for 2 or 3 identical spheres reveal that combined wall–particle and particle–particle interactions deeply depend on the cluster's geometry and distance to the wall and may even cancel for a sphere which then moves as it were isolated.
La sédimentation en régime de Stokes de corps solides quelconques situés près d'une paroi plane est étudiée à l'aide de 6N équations de frontière. Les résultats pour 2 ou 3 sphères identiques montrent que la résultante des intéractions particule-particule et paroi-particule est très sensible à la disposition des sphères et peut même s'annuler pour l'une d'elles qui dans ce cas migre comme si elle était seule.
Accepted:
Published online:
Mots-clés : Mécanique des fluides, Sédimentation, Interactions particule-particule, Interactions particule-paroi, Eléments de frontière
Antoine Sellier 1
@article{CRMECA_2005__333_5_413_0, author = {Antoine Sellier}, title = {Settling motion of interacting solid particles in the vicinity of a plane solid boundary}, journal = {Comptes Rendus. M\'ecanique}, pages = {413--418}, publisher = {Elsevier}, volume = {333}, number = {5}, year = {2005}, doi = {10.1016/j.crme.2005.02.008}, language = {en}, }
Antoine Sellier. Settling motion of interacting solid particles in the vicinity of a plane solid boundary. Comptes Rendus. Mécanique, Volume 333 (2005) no. 5, pp. 413-418. doi : 10.1016/j.crme.2005.02.008. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2005.02.008/
[1] On the slow gravity-driven migration of arbitrary clusters of small solid particles, C. R. Mécanique, Volume 332 (2004) no. 12, pp. 987-992
[2] The motion of a rigid body in viscous fluid bounded by a plane wall, J. Fluid Mech., Volume 207 (1989), pp. 29-72
[3] Stokes flow for the axisymmetric motion of several spherical particles perpendicular to a plane wall, Z. Angew. Math. Phys., Volume 54 (2003), pp. 1-24
[4] Gravitational and zero-drag motion of a spheroid adjacent to an inclined plane at low Reynolds number, J. Fluid Mech., Volume 268 (1994), pp. 267-292
[5] A note on the image system for a Stokeslet in a no-slip boundary, Proc. Cambridge Philos. Soc., Volume 70 (1971), pp. 303-310
[6] Low Reynolds Number Hydrodynamics, Martinus Nijhoff, 1973
[7] Boundary Integral and Singularity Methods for Linearized Viscous Flow, Cambridge University Press, 1992
[8] Particles in a shear flow near a solid wall: effect of nonsphericity on forces and velocities, Int. J. Multiphase Flow, Volume 23 (1997) no. 1, pp. 155-182
[9] Boundary Integral Equation Methods for Solids and Fluids, Wiley, 1999
[10] Creeping flow around a sphere in shear flow close to a wall, Q. J. Mech. Appl. Math., Volume 56 (2003), pp. 381-410
Cited by Sources:
Comments - Policy