Comptes Rendus
On some localized waves described by the extended KdV equation
Comptes Rendus. Mécanique, Volume 333 (2005) no. 7, pp. 528-533.

The influence of higher-order nonlinear terms on the shape of solitary waves is studied for mechanical systems governed by a generalization of the 5th order Korteweg–de Vries equation. New localized travelling wave with intrinsic oscillations (not breathers) is shown to arise from arbitrary initial pulse thanks only to the higher-order quadratic nonlinearity, while cubic nonlinearity is responsible for the formation of so-called ‘fat’ solitary wave.

On étudie l'influence des termes non linéaires d'ordre élevé sur la forme d'ondes solitaires dans des systèmes mécaniques gouvernés par une équation de KdV d'ordre cinq. On montre que de nouvelles solutions d'ondes localisées présentant des oscillations intrinsèques (pas des ‘breathers’) sont engendrées par une impulsion initiale arbitraire grâce aux non linéarités quadratiques, alors que la non linéarité cubique est responsable de la formation d'une onde solitaire dite « épaisse » (ou « grasse »).

Published online:
DOI: 10.1016/j.crme.2005.06.003
Keywords: Waves, Nonlinear wave, Solitary wave, Numerical solution
Mot clés : Ondes, Ondes non linéaires, Ondes solitaires, Solution numérique

Alexey V. Porubov 1; Gérard A. Maugin 2; Vitaly V. Gursky 1; Valeria V. Krzhizhanovskaya 3

1 Ioffe Physico-Technical Institute of the Russian Academy of Sciences, St. Petersburg 194021, Russia
2 Laboratoire de modélisation en mécanique associé au CNRS, université Pierre et Marie Curie, 4, place Jussieu, case 162, 75252 Paris cedex 05, France
3 Institute for High-Performance Computing and Data Bases, St.Petersburg, Russia
     author = {Alexey V. Porubov and G\'erard A. Maugin and Vitaly V. Gursky and Valeria V. Krzhizhanovskaya},
     title = {On some localized waves described by the extended {KdV} equation},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {528--533},
     publisher = {Elsevier},
     volume = {333},
     number = {7},
     year = {2005},
     doi = {10.1016/j.crme.2005.06.003},
     language = {en},
AU  - Alexey V. Porubov
AU  - Gérard A. Maugin
AU  - Vitaly V. Gursky
AU  - Valeria V. Krzhizhanovskaya
TI  - On some localized waves described by the extended KdV equation
JO  - Comptes Rendus. Mécanique
PY  - 2005
SP  - 528
EP  - 533
VL  - 333
IS  - 7
PB  - Elsevier
DO  - 10.1016/j.crme.2005.06.003
LA  - en
ID  - CRMECA_2005__333_7_528_0
ER  - 
%0 Journal Article
%A Alexey V. Porubov
%A Gérard A. Maugin
%A Vitaly V. Gursky
%A Valeria V. Krzhizhanovskaya
%T On some localized waves described by the extended KdV equation
%J Comptes Rendus. Mécanique
%D 2005
%P 528-533
%V 333
%N 7
%I Elsevier
%R 10.1016/j.crme.2005.06.003
%G en
%F CRMECA_2005__333_7_528_0
Alexey V. Porubov; Gérard A. Maugin; Vitaly V. Gursky; Valeria V. Krzhizhanovskaya. On some localized waves described by the extended KdV equation. Comptes Rendus. Mécanique, Volume 333 (2005) no. 7, pp. 528-533. doi : 10.1016/j.crme.2005.06.003.

[1] T.R. Marchant Solitary wave interaction for the extended BBM equation, Proc. Roy. Soc. London Ser. A, Volume 456 (2000), pp. 433-453

[2] J. Engelbrecht; M. Braun Nonlinear waves in nonlocal media, Appl. Mech. Rev., Volume 51 (1998), pp. 475-488

[3] A.M. Kosevich; S.E. Savotchenko Features of dynamics of one-dimensional discrete systems with non-neighbouring interactions, and role of higher-order dispersion in solitary wave dynamics, Low Temp. Phys., Volume 25 (1999), pp. 737-747 (in Russian)

[4] J.K. Hunter; J. Scheurle Existence of perturbed solitary wave solutions to a model equation for water waves, Physica D, Volume 32 (1988), pp. 253-268

[5] H. Nagashima; M. Kuwahara Computer simulation of solitary waves of the nonlinear wave equation ut+uuxγ2u5x=0, J. Phys. Soc. Jpn., Volume 50 (1981), pp. 3792-3800

[6] K. Kano; T. Nakayama An exact solution of the wave equation ut+uuxu5x=0, J. Phys. Soc. Jpn., Volume 50 (1981), pp. 361-362

[7] E.J. Parkes; B.R. Duffy An automated tanh-function method for finding solitary wave solutions to nonlinear evolution equations, Comput. Phys. Comm., Volume 98 (1996), pp. 288-300

[8] T. Kawahara Oscillatory solitary waves in dispersive media, J. Phys. Soc. Jpn., Volume 33 (1972), pp. 260-264

[9] N.A. Kudryashov; M.B. Sukharev Exact solutions of a non-linear fifth-order equation for describing waves on water, J. Appl. Math. Mech., Volume 65 (2001), pp. 855-865

[10] A.V. Porubov Amplification of Nonlinear Strain Waves in Solids, World Scientific, Singapore, 2003

[11] I.L. Kliakhandler

[12] A.R. Champneys; B.A. Malomed; J. Yang; D.J. Kaup Embedded solitons: solitary waves in resonance with the linear spectrum, Physica D, Volume 152–153 (2001), pp. 340-354

[13] T. Kakutani; N. Yamasaki Solitary waves on a two-layer fluid, J. Phys. Soc. Jpn., Volume 45 (1978), pp. 674-679

[14] E.S. Benilov; R. Grimshaw; E.P. Kuznetsova The generation of radiating waves in a singularly-perturbed KdV equation, Physica D, Volume 69 (1993), pp. 270-278

[15] A.V. Slyunyaev; E.N. Pelinovski Dynamics of large-amplitude solitons, JETP, Volume 89 (1999), pp. 173-181

Cited by Sources:

Comments - Policy