Comptes Rendus
Gravitational motion of a two-particle cluster between two parallel plane solid walls
Comptes Rendus. Mécanique, Volume 334 (2006) no. 2, pp. 105-110.

The slow viscous settling migration of a 2-particule cluster between two solid and parallel plane walls is investigated by resorting to a Boundary Element Method. The procedure, valid for arbitrarily-shaped bodies, is presented and preliminary numerical results for both identical spheres and a spheroid-sphere cluster are discussed.

On détermine la vitesse de sédimentation de deux particules solides dans un liquide confiné entre deux parois solides, planes et parallèles en négligeant les effets inertiels et en ayant recours à la seule résolution d'équations intégrales de frontière. Outre la théorie, des résultats numériques sont fournis pour la sédimentation de deux sphères identiques et d'une paire de particules comprenant un ellipsoide de révolution et une sphère.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2005.11.007
Keywords: Fluid mechanics, Sedimentation, Two-particle cluster, Parallel walls, Boundary formulation
Mot clés : Mécanique des fluides, Sédimentation, Paire de particules, Parois parallèles, Formulation intégrale

Laurentiu Pasol 1; Antoine Sellier 1

1 LadHyX, École polytechnique, 91128 Palaiseau cedex, France
@article{CRMECA_2006__334_2_105_0,
     author = {Laurentiu Pasol and Antoine Sellier},
     title = {Gravitational motion of a two-particle cluster between two parallel plane solid walls},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {105--110},
     publisher = {Elsevier},
     volume = {334},
     number = {2},
     year = {2006},
     doi = {10.1016/j.crme.2005.11.007},
     language = {en},
}
TY  - JOUR
AU  - Laurentiu Pasol
AU  - Antoine Sellier
TI  - Gravitational motion of a two-particle cluster between two parallel plane solid walls
JO  - Comptes Rendus. Mécanique
PY  - 2006
SP  - 105
EP  - 110
VL  - 334
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crme.2005.11.007
LA  - en
ID  - CRMECA_2006__334_2_105_0
ER  - 
%0 Journal Article
%A Laurentiu Pasol
%A Antoine Sellier
%T Gravitational motion of a two-particle cluster between two parallel plane solid walls
%J Comptes Rendus. Mécanique
%D 2006
%P 105-110
%V 334
%N 2
%I Elsevier
%R 10.1016/j.crme.2005.11.007
%G en
%F CRMECA_2006__334_2_105_0
Laurentiu Pasol; Antoine Sellier. Gravitational motion of a two-particle cluster between two parallel plane solid walls. Comptes Rendus. Mécanique, Volume 334 (2006) no. 2, pp. 105-110. doi : 10.1016/j.crme.2005.11.007. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2005.11.007/

[1] P. Ganatos; R. Pfeffer; S. Weinbaum A strong interaction theory for the creeping motion of a sphere between plane parallel boundaries. 1. Perpendicular motion, J. Fluid Mech., Volume 9 (1980), pp. 739-753

[2] P. Ganatos; R. Pfeffer; S. Weinbaum A strong interaction theory for the creeping motion of a sphere between plane parallel boundaries. 2. Parallel motion, J. Fluid Mech., Volume 9 (1980), pp. 755-783

[3] R.B. Jones Spherical particle in Poiseuille flow between planar walls, J. Chem. Phys., Volume 121 (2004) no. 1, pp. 483-500

[4] M.E. Staben; A.Z. Zinchenko; R.H. Davis Motion of a particle between two parallel plane walls in low-Reynolds-number Poiseuille flow, Phys. Fluids, Volume 15 (2003) no. 6, pp. 1711-1733

[5] S. Bhattacharya; J. Blawzdziewicz; E. Wajnryb Hydrodynamic interactions of spherical particles in suspensions confined between two planar walls, J. Fluid Mech., Volume 541 (2005), pp. 263-292

[6] A. Sellier Settling motion of interacting solid particles in the vicinity of a plane solid boundary, C. R. Mécanique, Volume 333 (2005) no. 5, pp. 413-418

[7] J. Happel; H. Brenner Low Reynolds Number Hydrodynamics, Martinus Nijhoff, 1973

[8] C. Pozrikidis Boundary Integral and Singularity Methods for Linearized Viscous Flow, Cambridge Univ. Press, Cambridge, UK, 1992

[9] N. Liron; S.M. Mochon Stokes flow for a stokeslet between two parallel flat plates, J. Engrg. Math., Volume 10 (1976), pp. 287-303

[10] M. Bonnet Boundary Integral Equation Methods for Solids and Fluids, John Wiley & Sons Ltd, New York, 1999

Cited by Sources:

Comments - Policy