The slow viscous settling migration of a 2-particule cluster between two solid and parallel plane walls is investigated by resorting to a Boundary Element Method. The procedure, valid for arbitrarily-shaped bodies, is presented and preliminary numerical results for both identical spheres and a spheroid-sphere cluster are discussed.
On détermine la vitesse de sédimentation de deux particules solides dans un liquide confiné entre deux parois solides, planes et parallèles en négligeant les effets inertiels et en ayant recours à la seule résolution d'équations intégrales de frontière. Outre la théorie, des résultats numériques sont fournis pour la sédimentation de deux sphères identiques et d'une paire de particules comprenant un ellipsoide de révolution et une sphère.
Accepted:
Published online:
Mot clés : Mécanique des fluides, Sédimentation, Paire de particules, Parois parallèles, Formulation intégrale
Laurentiu Pasol 1; Antoine Sellier 1
@article{CRMECA_2006__334_2_105_0, author = {Laurentiu Pasol and Antoine Sellier}, title = {Gravitational motion of a two-particle cluster between two parallel plane solid walls}, journal = {Comptes Rendus. M\'ecanique}, pages = {105--110}, publisher = {Elsevier}, volume = {334}, number = {2}, year = {2006}, doi = {10.1016/j.crme.2005.11.007}, language = {en}, }
TY - JOUR AU - Laurentiu Pasol AU - Antoine Sellier TI - Gravitational motion of a two-particle cluster between two parallel plane solid walls JO - Comptes Rendus. Mécanique PY - 2006 SP - 105 EP - 110 VL - 334 IS - 2 PB - Elsevier DO - 10.1016/j.crme.2005.11.007 LA - en ID - CRMECA_2006__334_2_105_0 ER -
Laurentiu Pasol; Antoine Sellier. Gravitational motion of a two-particle cluster between two parallel plane solid walls. Comptes Rendus. Mécanique, Volume 334 (2006) no. 2, pp. 105-110. doi : 10.1016/j.crme.2005.11.007. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2005.11.007/
[1] A strong interaction theory for the creeping motion of a sphere between plane parallel boundaries. 1. Perpendicular motion, J. Fluid Mech., Volume 9 (1980), pp. 739-753
[2] A strong interaction theory for the creeping motion of a sphere between plane parallel boundaries. 2. Parallel motion, J. Fluid Mech., Volume 9 (1980), pp. 755-783
[3] Spherical particle in Poiseuille flow between planar walls, J. Chem. Phys., Volume 121 (2004) no. 1, pp. 483-500
[4] Motion of a particle between two parallel plane walls in low-Reynolds-number Poiseuille flow, Phys. Fluids, Volume 15 (2003) no. 6, pp. 1711-1733
[5] Hydrodynamic interactions of spherical particles in suspensions confined between two planar walls, J. Fluid Mech., Volume 541 (2005), pp. 263-292
[6] Settling motion of interacting solid particles in the vicinity of a plane solid boundary, C. R. Mécanique, Volume 333 (2005) no. 5, pp. 413-418
[7] Low Reynolds Number Hydrodynamics, Martinus Nijhoff, 1973
[8] Boundary Integral and Singularity Methods for Linearized Viscous Flow, Cambridge Univ. Press, Cambridge, UK, 1992
[9] Stokes flow for a stokeslet between two parallel flat plates, J. Engrg. Math., Volume 10 (1976), pp. 287-303
[10] Boundary Integral Equation Methods for Solids and Fluids, John Wiley & Sons Ltd, New York, 1999
Cited by Sources:
Comments - Policy