We use Large Eddy Simulation to investigate the influence of upstream boundary conditions on the development of a backward facing step flow. The first inlet condition consists of a mean turbulent boundary layer velocity profile perturbed by a white noise. The second relies upon a precursor calculation where the development of a quasi-temporal turbulent boundary layer is simulated. In this case, the quasi-longitudinal vortices in the upstream turbulent boundary-layer trigger the destabilization of the shear layer just behind the step, resulting in a shortening of the recirculation length and an increase of the characteristic frequency associated to the Kelvin–Helmholtz vortices. The mean flow and the characteristic frequencies of pressure fluctuations are strongly dependent of the upstream flow. It demonstrates the importance of realistic boundary conditions for the simulation of complex 3D flows or for flow control simulations.
On étudie grâce à la simulation des grandes échelles l'influence des conditions aux limites amont sur l'écoulement en aval d'une marche descendante. La première condition consiste à ajouter un bruit blanc (BB) à un profil de vitesse de couche limite turbulente. La seconde s'appuie sur un calcul précurseur (CP) où on simule le développement d'une couche limite turbulente quasi-périodique. Dans ce dernier cas, les tourbillons quasi-longitudinaux de la couche limite amont provoquent une déstabilisation précoce de la couche de mélange en aval de la marche. Ceci conduit à une réduction de la longueur de recirculation et à une modification des fréquences caractéristiques. La fréquence associée aux tourbillons de Kelvin–Helmholtz est nettement augmentée. Ces résultats soulignent l'importance des conditions aux limites amonts pour la simulation d'écoulements 3D complexes et pour les problèmes de contrôle d'écoulement.
Accepted:
Published online:
Mots-clés : Mécanique des fluides numérique, Turbulence, Marche descendante, Simulation des grandes echelles
Jean-Luc Aider 1, 2; Alexandra Danet 1, 3
@article{CRMECA_2006__334_7_447_0, author = {Jean-Luc Aider and Alexandra Danet}, title = {Large-eddy simulation study of upstream boundary conditions influence upon a backward-facing step flow}, journal = {Comptes Rendus. M\'ecanique}, pages = {447--453}, publisher = {Elsevier}, volume = {334}, number = {7}, year = {2006}, doi = {10.1016/j.crme.2006.05.004}, language = {en}, }
TY - JOUR AU - Jean-Luc Aider AU - Alexandra Danet TI - Large-eddy simulation study of upstream boundary conditions influence upon a backward-facing step flow JO - Comptes Rendus. Mécanique PY - 2006 SP - 447 EP - 453 VL - 334 IS - 7 PB - Elsevier DO - 10.1016/j.crme.2006.05.004 LA - en ID - CRMECA_2006__334_7_447_0 ER -
Jean-Luc Aider; Alexandra Danet. Large-eddy simulation study of upstream boundary conditions influence upon a backward-facing step flow. Comptes Rendus. Mécanique, Volume 334 (2006) no. 7, pp. 447-453. doi : 10.1016/j.crme.2006.05.004. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2006.05.004/
[1] F. Mathey, D. Cokljat, J.P. Bertoglio, E. Sergent, Specification of LES inlet boundary conditions using vortex method, in: Proceedings of the 4th International Symposium on Turbulence, Heat and Mass Transfer, Antalya, Turkey, 2003
[2] The effect of inlet turbulence intensity on the reattachment process over a backward-facing step, J. Fluids Eng., Volume 111 (1989), pp. 87-92
[3] A priori and a posteriori tests of inflow conditions for large-eddy simulation, Phys. Fluids, Volume 16 (2004), pp. 4696-4712
[4] Spectral large eddy simulation of isotropic and stably stratified turbulence, J. Fluid Mech., Volume 239 (1992), pp. 157-194
[5] Large-eddy simulation of transition to turbulence in a boundary layer developing spatially over a flat plate, J. Fluid Mech., Volume 326 (1996), pp. 1-36
[6] Large-Eddy Simulations of Turbulence, Cambridge Univ. Press, 2005
[7] Direct numerical simulation of turbulent flow over a backward-facing step, J. Fluid Mech., Volume 330 (1997), pp. 349-374
[8] S. Jovic, D.M. Driver, Backward-facing step measurements at low Reynolds number, , NASA Tech. Mem. 108807, 1994
[9] Direct numerical simulation of a turbulent boundary layer up to , J. Fluid Mech., Volume 187 (1988), pp. 61-98
[10] Large eddy simulation of rearward-facing step flow, AIAA J., Volume 37 (1999), pp. 1401-1410
[11] Generation of turbulent inflow data for spatially-developing boundary layer simulations, Phys. Fluids, Volume 140 (1998), pp. 233-238
[12] J. Silvestrini, Simulations des grandes échelles des zones de mélanges; application à la propulsion solide des lanceurs spatiaux, Thèse de Doctorat de l'Institut National Polytechnique de Grenoble, 1996
[13] Low frequency unsteadiness of a reattaching turbulent shear layer, Turbulent Shear Flows, Volume 3 (1982), pp. 162-170
[14] Control of coherent structures in reattaching laminar and turbulent shear layer, AIAA J., Volume 24 (1986), pp. 1956-1963
[15] Time-dependent behavior in a reattaching shear layer, AIAA J., Volume 25 (1987) no. 7, pp. 914-919
[16] Near-wall behavior of separated and reattaching flows, AIAA J., Volume 29 (1991) no. 1, pp. 25-31
[17] Large Eddy Simulation of a turbulent flow with separation, Turbulent Shear Flows, Volume 8 (1991), p. 169
[18] A numerical investigation of the coherent vortices in turbulence behind a backward-facing step, J. Fluid Mech., Volume 256 (1993), pp. 1-25
[19] F. Delcayre, Etude par Simulation des Grandes Echelles d'un écoulement décollé : la marche descendante, Thèse de Doctorat de l'Institut National Polytechnique de Grenoble, 1999
Cited by Sources:
Comments - Policy