Comptes Rendus
A micromechanical analysis of damage propagation in fluid-saturated cracked media
[Une analyse micromécanique de la propagation de l'endommagement d'une fissure sous pression de fluide]
Comptes Rendus. Mécanique, Volume 334 (2006) no. 7, pp. 440-446.

We first revisit the well known framework of Linear Elastic Fracture Mechanics (LEFM) in the case of a fluid-saturated crack. We next consider a r.e.v. of cracked medium comprising a family of cracks characterized by the corresponding crack density parameter ε. Generalizing the classical energy approach of LEFM, the proposed damage criterion is written on the thermodynamic force associated with ε, which is estimated by means of standard homogenization schemes. This criterion proves to involve a macroscopic effective strain tensor, or alternatively the Terzaghi effective stress tensor. The stability of damage propagation is discussed for various homogenization schemes. A comparison with experimental results is presented in the case of a uniaxial tensile test on concrete.

On reprend tout d'abord le cadre classique de la Mécanique Linéaire de la Rupture (MLR) en considérant le cas d'une fissure sous pression de fluide. Puis l'on s'intéresse à un v.e.r. de milieu fissuré saturé comprenant une famille de fissures caractérisée par le paramètre de densité ε correspondant. Généralisant l'approche énergétique usuelle de la MLR, le critère d'endommagement est formulé sur la force thermodynamique associée à ε, celle-ci pouvant être estimée à l'aide de divers schémas d'homogénéisation. On montre que ce critère s'exprime en fonction d'une déformation effective macroscopique, ou alternativement, en fonction de la contrainte effective de Terzaghi. La stabilité de la propagation de l'endommagement est discutée en fonction du schéma utilisé. On présente une comparaison avec les résultats d'un essai de traction uniaxiale sur une éprouvette de béton.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2006.05.007
Keywords: Damage, Homogenization, Micromechanics, Cracking, Anisotropy, Eshelby tensor
Mots-clés : Endommagement, Homogénéisation, Micromécanique, Fissure, Anisotropie, Tenseur d'Eshelby

Luc Dormieux 1 ; Djimedo Kondo 2 ; Franz-Josef Ulm 3

1 LMSGC, ENPC, cité Descartes, 77455 Marne la Vallée cedex, France
2 Laboratoire de mécanique de Lille-UMR CNRS 8107, USTL, 59655 Villeneuve d'Ascq cedex, France
3 Department of Civil Engineering, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, USA
@article{CRMECA_2006__334_7_440_0,
     author = {Luc Dormieux and Djimedo Kondo and Franz-Josef Ulm},
     title = {A micromechanical analysis of damage propagation in fluid-saturated cracked media},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {440--446},
     publisher = {Elsevier},
     volume = {334},
     number = {7},
     year = {2006},
     doi = {10.1016/j.crme.2006.05.007},
     language = {en},
}
TY  - JOUR
AU  - Luc Dormieux
AU  - Djimedo Kondo
AU  - Franz-Josef Ulm
TI  - A micromechanical analysis of damage propagation in fluid-saturated cracked media
JO  - Comptes Rendus. Mécanique
PY  - 2006
SP  - 440
EP  - 446
VL  - 334
IS  - 7
PB  - Elsevier
DO  - 10.1016/j.crme.2006.05.007
LA  - en
ID  - CRMECA_2006__334_7_440_0
ER  - 
%0 Journal Article
%A Luc Dormieux
%A Djimedo Kondo
%A Franz-Josef Ulm
%T A micromechanical analysis of damage propagation in fluid-saturated cracked media
%J Comptes Rendus. Mécanique
%D 2006
%P 440-446
%V 334
%N 7
%I Elsevier
%R 10.1016/j.crme.2006.05.007
%G en
%F CRMECA_2006__334_7_440_0
Luc Dormieux; Djimedo Kondo; Franz-Josef Ulm. A micromechanical analysis of damage propagation in fluid-saturated cracked media. Comptes Rendus. Mécanique, Volume 334 (2006) no. 7, pp. 440-446. doi : 10.1016/j.crme.2006.05.007. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2006.05.007/

[1] J.-J. Marigo Formulation d'une loi d'endommagement d'un matériau élastique, C. R. Acad. Sci. Paris II, Volume 292 (1981), pp. 1309-1312

[2] H. Horii; S. Nemat-Nasser Overall moduli of solids with microcracks: load-induced anisotropy, J. Mech. Phys. Solids, Volume 31 (1983) no. 2, pp. 155-171

[3] T. Mura Micromechanics of Defects in Solids, Martinus Nijhoff Publ., 1987

[4] M. Kachanov Elastic solids with many cracks and related problems, Adv. Appl. Mech., Volume 30 (1993), pp. 259-445

[5] D. Krajcinowic Damage Mechanics, North-Holland, 1996

[6] B. Budiansky; R. O'Connell Elastic moduli of a cracked solid, Int. J. Solids Struct., Volume 12 (1976), pp. 81-97

[7] P. Suquet, Plasticité et homogénéisation, Thèse de Doctorat d'Etat, Paris VI, 1982

[8] S. Andrieux; Y. Bamberger; J.-J. Marigo Un modèle de matériau microfissuré pour les roches et les bétons, J. Mech. Theor. Appl., Volume 5 (1986) no. 3, pp. 471-513

[9] V. Pensée; D. Kondo; L. Dormieux Micromechanical analysis of anisotropic damage in brittle materials, J. Engrg. Mech., ASCE, Volume 128 (2002) no. 8, pp. 889-897

[10] L. Dormieux; D. Kondo Poroelasticity and damage theory for saturated cracked media, Applied Micromechanics of Porous Materials, CISM Lecture Notes, vol. 480, Springer-Verlag, 2005, pp. 153-186

[11] Q.S. Nguyen Stability and Non Linear Solids Mechanics, Wiley, 2000

[12] J.-B. Leblond Mécanique de la rupture ductile et de la rupture fragile, Hermes, 2001

[13] V. Pensée; L. Dormieux; D. Kondo; V. Deudé Poroélasticité d'un milieu mésofissuré : analyse micromécanique, C. R. Acad. Sci. Paris, série IIb, Volume 330 (2002), pp. 147-152

[14] V. Deudé; L. Dormieux; D. Kondo; S. Maghous Micromechanical approach to nonlinear poroelasticity: application to cracked rocks, J. Engrg. Mech., Volume 128 (2002), pp. 848-855

[15] P. Ponte-Castaneda; J.R. Willis The effect of spatial distribution on the effective behavior of composite materials and cracked media, J. Mech. Phys. Solids, Volume 43 (1995) no. 12, pp. 1919-1951

[16] V.S. Gopalaratnam; S.P. Shah Softening response of plain concrete under tension, ACI J., Volume 82 (1985) no. 3, pp. 310-322

  • Daniel Chou; Chloé Arson Microstructure Features that Most Influence the Mori–Tanaka Scheme Breakdown in 2D Solids with Crack-Like Flat Cavities, Journal of Engineering Mechanics, Volume 151 (2025) no. 9 | DOI:10.1061/jenmdt.emeng-8025
  • Gilles Corman; Laura Gonzalez-Blanco; Séverine Levasseur; Frédéric Collin Hydro-mechanical modelling of gas transport processes in clay materials using a multi-scale approach, Computers and Geotechnics, Volume 173 (2024), p. 106503 | DOI:10.1016/j.compgeo.2024.106503
  • Jianxiong Yang; Jianfeng Liu; Zhengyuan Qin; Xuhai Tang; Houquan Zhang Multiscale modeling of gas-induced fracturing in anisotropic clayey rocks, Journal of Rock Mechanics and Geotechnical Engineering, Volume 16 (2024) no. 6, p. 2091 | DOI:10.1016/j.jrmge.2024.03.011
  • Marcos Bressan Guimarães; Cássio Barros de Aguiar; Samir Maghous Upscaling modeling of effective elastic properties and anisotropic damage propagation in fractured materials regarded as homogenized media, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Volume 46 (2024) no. 1 | DOI:10.1007/s40430-023-04579-y
  • Sarah Abou Chakra; Benoît Bary; Eric Lemarchand; Christophe Bourcier; Sylvie Granet; Jean Talandier Micromechanical Estimates Compared to FE-Based Methods for Modelling the Behaviour of Micro-Cracked Viscoelastic Materials, Modelling, Volume 5 (2024) no. 2, p. 625 | DOI:10.3390/modelling5020033
  • Jianxiong Yang; Mamadou Fall Coupled Two-Phase Flow and Elastodamage Modeling of Laboratory and In Situ Gas Injection Experiments in Saturated Claystone as a Potential Host Rock for Nuclear Waste Repository, International Journal of Geomechanics, Volume 23 (2023) no. 4 | DOI:10.1061/ijgnai.gmeng-7968
  • Michael Schwaighofer; Markus Königsberger; Bernhard L. A. Pichler Effect of Hydrate Failure in ITZs on the Initiation of Prepeak Nonlinearities of Concrete under Multiaxial Compression, Journal of Engineering Mechanics, Volume 149 (2023) no. 1 | DOI:10.1061/(asce)em.1943-7889.0002165
  • Jiafeng Gu; Qingwen Ren; Mei Tao; Yan Han; Linfei Zhang Permeability Coefficient of Concrete under Complex Stress States, Materials, Volume 16 (2023) no. 12, p. 4368 | DOI:10.3390/ma16124368
  • Jacinto Ulloa; Nima Noii; Roberto Alessi; Fadi Aldakheel; Geert Degrande; Stijn François Variational modeling of hydromechanical fracture in saturated porous media: a micromechanics-based phase-field approach, Computer Methods in Applied Mechanics and Engineering, Volume 396 (2022), p. 34 (Id/No 115084) | DOI:10.1016/j.cma.2022.115084 | Zbl:1507.74422
  • L.L. Shi; J. Zhang; Q.Z. Zhu; H.H. Sun Prediction of mechanical behavior of rocks with strong strain-softening effects by a deep-learning approach, Computers and Geotechnics, Volume 152 (2022), p. 105040 | DOI:10.1016/j.compgeo.2022.105040
  • Y.J. Cao; W.Q. Shen; J.F. Shao; W. Wang A multi-scale model of plasticity and damage for rock-like materials with pores and inclusions, International Journal of Rock Mechanics and Mining Sciences, Volume 138 (2021), p. 104579 | DOI:10.1016/j.ijrmms.2020.104579
  • Vasav Dubey; Sara Abedi; Arash Noshadravan A multiscale modeling of damage accumulation and permeability variation in shale rocks under mechanical loading, Journal of Petroleum Science and Engineering, Volume 198 (2021), p. 108123 | DOI:10.1016/j.petrol.2020.108123
  • Jianxiong Yang; Mamadou Fall A two-scale time dependent damage model for preferential gas flow in clayey rock materials, Mechanics of Materials, Volume 158 (2021), p. 103853 | DOI:10.1016/j.mechmat.2021.103853
  • Matti Schneider An FFT-based method for computing weighted minimal surfaces in microstructures with applications to the computational homogenization of brittle fracture, International Journal for Numerical Methods in Engineering, Volume 121 (2020) no. 7, pp. 1367-1387 | DOI:10.1002/nme.6270 | Zbl:1548.74487
  • Alexandre Yammine; François Bignonnet; Nordine Leklou; Marta Choinska; T. Tracz; K. Mróz; T. Zdeb Micromechanical modelling of damage induced by delayedettringite formation in concrete, MATEC Web of Conferences, Volume 322 (2020), p. 01037 | DOI:10.1051/matecconf/202032201037
  • Shuang-Shuang Yuan; Qi-Zhi Zhu; Lun-Yang Zhao; Liang Chen; Jian-Fu Shao; Jin Zhang Micromechanical modelling of short- and long-term behavior of saturated quasi-brittle rocks, Mechanics of Materials, Volume 142 (2020), p. 103298 | DOI:10.1016/j.mechmat.2019.103298
  • Chloé Arson Micro-macro mechanics of damage and healing in rocks, Open Geomechanics, Volume 2 (2020), p. 1 | DOI:10.5802/ogeo.4
  • Qizhi Zhu; Jianfu Shao Micromechanics of rock damage: Advances in the quasi-brittle field, Journal of Rock Mechanics and Geotechnical Engineering, Volume 9 (2017) no. 1, p. 29 | DOI:10.1016/j.jrmge.2016.11.003
  • A. Karrech; F. Abbassi; H. Basarir; M. Attar Self-consistent fractal damage of natural geo-materials in finite strain, Mechanics of Materials, Volume 104 (2017), p. 107 | DOI:10.1016/j.mechmat.2016.08.017
  • Steffen Abe Comparison of discrete element simulations to theoretical predictions of the elastic moduli of damaged rocks, International Journal of Rock Mechanics and Mining Sciences, Volume 88 (2016), p. 265 | DOI:10.1016/j.ijrmms.2016.07.022
  • Chloé Arson; Zenon Medina-Cetina Bayesian paradigm to assess rock compression damage models, Environmental Geotechnics, Volume 2 (2015) no. 3, p. 155 | DOI:10.1680/envgeo.13.00039
  • Cheng Zhu; Chloé Arson A thermo-mechanical damage model for rock stiffness during anisotropic crack opening and closure, Acta Geotechnica, Volume 9 (2014) no. 5, p. 847 | DOI:10.1007/s11440-013-0281-0
  • HAO XU; CHLOÉ ARSON ANISOTROPIC DAMAGE MODELS FOR GEOMATERIALS: THEORETICAL AND NUMERICAL CHALLENGES, International Journal of Computational Methods, Volume 11 (2014) no. 02, p. 1342007 | DOI:10.1142/s0219876213420073
  • A. Karrech; C. Schrank; R. Freij-Ayoub; K. Regenauer-Lieb A multi-scaling approach to predict hydraulic damage of poromaterials, International Journal of Mechanical Sciences, Volume 78 (2014), p. 1 | DOI:10.1016/j.ijmecsci.2013.10.010
  • T.J. Massart; A.P.S. Selvadurai Computational modelling of crack-induced permeability evolution in granite with dilatant cracks, International Journal of Rock Mechanics and Mining Sciences, Volume 70 (2014), p. 593 | DOI:10.1016/j.ijrmms.2014.06.006
  • S. Maghous, Proceedings of 10th World Congress on Computational Mechanics (2014), p. 467 | DOI:10.5151/meceng-wccm2012-16812
  • S. Maghous; L. Dormieux; D. Kondo; J. F. Shao Micromechanics approach to poroelastic behavior of a jointed rock, International Journal for Numerical and Analytical Methods in Geomechanics, Volume 37 (2013) no. 2, p. 111 | DOI:10.1002/nag.1087
  • F. Kraaijeveld; J. M. Huyghe; J. J. C. Remmers; R. de Borst Two-Dimensional Mode I Crack Propagation in Saturated Ionized Porous Media Using Partition of Unity Finite Elements, Journal of Applied Mechanics, Volume 80 (2013) no. 2 | DOI:10.1115/1.4007904
  • Benoît Bary Estimation of poromechanical and thermal conductivity properties of unsaturated isotropically microcracked cement pastes, International Journal for Numerical and Analytical Methods in Geomechanics, Volume 35 (2011) no. 14, p. 1560 | DOI:10.1002/nag.969
  • Tongyan Pan; Linbing Wang Finite-Element Analysis of Chemical Transport and Reinforcement Corrosion-Induced Cracking in Variably Saturated Heterogeneous Concrete, Journal of Engineering Mechanics, Volume 137 (2011) no. 5, p. 334 | DOI:10.1061/(asce)em.1943-7889.0000232
  • Vinh Phu Nguyen; Oriol Lloberas Valls; Martijn Stroeven; Lambertus Johannes Sluys On the existence of representative volumes for softening quasi-brittle materials - A failure zone averaging scheme, Computer Methods in Applied Mechanics and Engineering, Volume 199 (2010) no. 45-48, pp. 3028-3038 | DOI:10.1016/j.cma.2010.06.018 | Zbl:1231.74372
  • Bernhard Pichler; Luc Dormieux Cracking risk of partially saturated porous media. I: Microporoelasticity model, International Journal for Numerical and Analytical Methods in Geomechanics, Volume 34 (2010) no. 2, pp. 135-157 | DOI:10.1002/nag.801 | Zbl:1273.74084
  • Bernhard Pichler; Luc Dormieux Cracking risk of partially saturated porous media. II: Application to drying shrinkage, International Journal for Numerical and Analytical Methods in Geomechanics, Volume 34 (2010) no. 2, pp. 159-186 | DOI:10.1002/nag.800 | Zbl:1273.74085
  • Q. Z. Zhu; D. Kondo; J. F. Shao Homogenization-based analysis of anisotropic damage in brittle materials with unilateral effect and interactions between microcracks, International Journal for Numerical and Analytical Methods in Geomechanics, Volume 33 (2009) no. 6, pp. 749-772 | DOI:10.1002/nag.741 | Zbl:1273.74419
  • Bernhard Pichler; Luc Dormieux Micromechanical Interpretation of the Dissipation Associated With Mode I Propagation of Microcracks in Brittle Materials, Journal of Applied Mechanics, Volume 76 (2009) no. 4 | DOI:10.1115/1.3086594
  • H. K. Lee; S. H. Pyo 3D-Damage Model for Fiber-Reinforced Brittle Composites with Microcracks and Imperfect Interfaces, Journal of Engineering Mechanics, Volume 135 (2009) no. 10, p. 1108 | DOI:10.1061/(asce)em.1943-7889.0000039
  • Rohit Khanna; Kalpana S. Katti; Dinesh R. Katti Nanomechanics of Surface Modified Nanohydroxyapatite Particulates Used in Biomaterials, Journal of Engineering Mechanics, Volume 135 (2009) no. 5, p. 468 | DOI:10.1061/(asce)em.1943-7889.0000002
  • C. Comi; R. Fedele; U. Perego A chemo-thermo-damage model for the analysis of concrete dams affected by alkali-silica reaction, Mechanics of Materials, Volume 41 (2009) no. 3, p. 210 | DOI:10.1016/j.mechmat.2008.10.010

Cité par 38 documents. Sources : Crossref, zbMATH

Commentaires - Politique