Following the study of Gologanu et al. (1997) which has extended the well-known approach of Gurson (1975), we propose approximate yield criteria for anisotropic plastic voided metals containing non spherical cavities. The plastic anisotropy of the matrix is described by means of Hill's quadratic criterion. The procedure to establish the closed form expression of approximate macroscopic criteria, in which void shape and plastic anisotropic effects are included, is detailed. The new criteria allow us to recover existing results in the cases of spherical and cylindrical voids in an Hill type plastic matrix. Moreover, they agree with previous criteria for non spherical voids in an isotropic plastic matrix. Finally, for validation purposes, we provide, in the general case of non spherical cavities in the anisotropic matrix, a comparison with the numerical exact two field criteria.
En se basant sur les travaux de Gologanu et al. (1997) qui étendent l'approche bien connue de Gurson, on propose des critères macroscopiques pour des métaux plastiques anisotropes contenant des cavités non sphériques. L'anisotropie plastique de la matrice est décrite à l'aide du critère quadratique de Hill. On détaille la procédure pour établir les critères approchés incluant la forme des cavités ainsi que les effets d'anisotropie plastique. Les nouveaux critères analytiques obtenus permettent de retrouver les résultats existants dans les cas de cavités sphériques ou cylindriques dans une matrice de type Hill. De plus, ils concordent avec ceux qui sont disponibles pour des cavités non sphériques dans un milieu plastique isotrope. Enfin, dans un but de validation, on fournit, dans le cas général de cavités non sphériques dans la matrice anisotrope, une comparaison avec les expressions des critères issues des solutions numériques exactes du problème à deux champs.
Accepted:
Published online:
Mots-clés : Mécanique des solides numérique, Métaux ductiles poreux, Anisotropie, Critère de Hill, Cavités allongées et aplaties
Vincent Monchiet 1; Cosmin Gruescu 1; Eric Charkaluk 1; Djimedo Kondo 1
@article{CRMECA_2006__334_7_431_0, author = {Vincent Monchiet and Cosmin Gruescu and Eric Charkaluk and Djimedo Kondo}, title = {Approximate yield criteria for anisotropic metals with prolate or oblate voids}, journal = {Comptes Rendus. M\'ecanique}, pages = {431--439}, publisher = {Elsevier}, volume = {334}, number = {7}, year = {2006}, doi = {10.1016/j.crme.2006.06.001}, language = {en}, }
TY - JOUR AU - Vincent Monchiet AU - Cosmin Gruescu AU - Eric Charkaluk AU - Djimedo Kondo TI - Approximate yield criteria for anisotropic metals with prolate or oblate voids JO - Comptes Rendus. Mécanique PY - 2006 SP - 431 EP - 439 VL - 334 IS - 7 PB - Elsevier DO - 10.1016/j.crme.2006.06.001 LA - en ID - CRMECA_2006__334_7_431_0 ER -
%0 Journal Article %A Vincent Monchiet %A Cosmin Gruescu %A Eric Charkaluk %A Djimedo Kondo %T Approximate yield criteria for anisotropic metals with prolate or oblate voids %J Comptes Rendus. Mécanique %D 2006 %P 431-439 %V 334 %N 7 %I Elsevier %R 10.1016/j.crme.2006.06.001 %G en %F CRMECA_2006__334_7_431_0
Vincent Monchiet; Cosmin Gruescu; Eric Charkaluk; Djimedo Kondo. Approximate yield criteria for anisotropic metals with prolate or oblate voids. Comptes Rendus. Mécanique, Volume 334 (2006) no. 7, pp. 431-439. doi : 10.1016/j.crme.2006.06.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2006.06.001/
[1] Continuum theory of ductile rupture by void nucleation and growth: Part I—Yield criterion and flow rules for porous ductile media, J. Engrg. Mater. Tech., Volume 99 (1977), pp. 2-15
[2] Approximate models for ductile metals containing non-spherical voids—case of axisymmetric prolate ellipsoidal cavities, J. Mech. Phys. Solids, Volume 41 (1993) no. 11, pp. 1723-1754
[3] Approximate models for ductile metals containing non-spherical voids—case of axisymmetric oblate ellipsoidal cavities, J. Engrg. Mater. Tech., Volume 116 (1994), pp. 290-297
[4] Recent extensions of Gurson's model for porous ductile metals (P. Suquet, ed.), Continuum Micromechanics, Springer-Verlag, Berlin/New York, 1997, pp. 61-130
[5] A micromechanical approach of damage in viscoplastic materials by evolution in size, shape and distribution of voids, Comput. Methods Appl. Mech. Engrg., Volume 183 (2000), pp. 223-246
[6] Plastic potentials for anisotropic porous solids, Eur. J. Mech. A/Solids, Volume 20 (2001), pp. 397-434
[7] Approximate yield criteria for anisotropic porous ductile sheet metals, Mech. Mater., Volume 26 (1997), pp. 213-226
[8] An anisotropic Gurson yield criterion for porous ductile sheet metals with planar anisotropy, Internat. J. Damage Mech., Volume 13 (2004)
[9] A theory of yielding and plastic flow of anisotropic solids, Proc. Roy. Soc. London A, Volume 193 (1948), pp. 281-297
[10] Prediction of forming limits for anisotropic sheets containing prolate ellipsoidal voids, Internat. J. Mech. Sci., Volume 45 (2003), pp. 1625-1643
Cited by Sources:
Comments - Policy