Comptes Rendus
Boussinesq equation, surface waves in fluids
J. Boussinesq and the standing water waves problem
Comptes Rendus. Mécanique, Volume 335 (2007) no. 9-10, pp. 584-589.

In this short Note we present the original Boussinesq's contribution to the nonlinear theory of the two dimensional standing gravity water wave problem, which he defined as ‘le clapotis’.

Dans cette courte Note on présente, en la situant dans le contexte actuel, la contribution originale de Boussinesq sur la théorie non linéaire du « clapotis ».

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2006.11.007
Keywords: Fluid mechanics, Inviscid fluid flows, Gravity water waves, Standing waves, Bifurcations
Mot clés : Mécanique des fluides, Écoulements d'un fluide non visqueux, Ondes stationnaires, Bifurcations

Gérard Iooss 1

1 IUF, Laboratoire J. Dieudonné, parc Valrose, 06108 Nice cedex 02, France
@article{CRMECA_2007__335_9-10_584_0,
     author = {G\'erard Iooss},
     title = {J. {Boussinesq} and the standing water waves problem},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {584--589},
     publisher = {Elsevier},
     volume = {335},
     number = {9-10},
     year = {2007},
     doi = {10.1016/j.crme.2006.11.007},
     language = {en},
}
TY  - JOUR
AU  - Gérard Iooss
TI  - J. Boussinesq and the standing water waves problem
JO  - Comptes Rendus. Mécanique
PY  - 2007
SP  - 584
EP  - 589
VL  - 335
IS  - 9-10
PB  - Elsevier
DO  - 10.1016/j.crme.2006.11.007
LA  - en
ID  - CRMECA_2007__335_9-10_584_0
ER  - 
%0 Journal Article
%A Gérard Iooss
%T J. Boussinesq and the standing water waves problem
%J Comptes Rendus. Mécanique
%D 2007
%P 584-589
%V 335
%N 9-10
%I Elsevier
%R 10.1016/j.crme.2006.11.007
%G en
%F CRMECA_2007__335_9-10_584_0
Gérard Iooss. J. Boussinesq and the standing water waves problem. Comptes Rendus. Mécanique, Volume 335 (2007) no. 9-10, pp. 584-589. doi : 10.1016/j.crme.2006.11.007. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2006.11.007/

[1] P.I. Plotnikov; J.F. Toland Nash–Moser theory for standing water waves, Arch. Rat. Mech. Anal., Volume 159 (2001) no. 1, pp. 1-83

[2] G. Iooss; P. Plotnikov; J. Toland Standing waves on an infinitely deep perfect fluid under gravity, Arch. Rat. Mech. Anal., Volume 177 (2005) no. 3, pp. 367-478

[3] G. Iooss; P. Plotnikov Existence of multimodal standing gravity waves, J. Math. Fluid Mech., Volume 7 (2005), p. S349-S364

[4] A.D. Craik The origins of water wave theory, Annu. Rev. Fluid Mech., Volume 36 (2004), pp. 1-28

[5] J. Boussinesq Théorie des ondes liquides périodiques, Mémoires présentés par divers savants à l'Académie des Sciences. Paris, Volume 20 (1872), pp. 509-616

[6] L.W. Schwartz; A.K. Whitney A semi-analytic solution for nonlinear standing waves in deep water, J. Fluid Mech., Volume 107 (1981), pp. 147-171

[7] J. Boussinesq Essai sur la théorie des eaux courantes, Mémoires présentés par divers savants à l'Académie des Sciences. Paris, Volume 23 (1877) no. 1, pp. 1-660

[8] G.G. Stokes On the theory of oscillatory waves, Trans. Camb. Phil. Soc., Volume 8 (1847), pp. 441-455

[9] L. Rayleigh Deep water waves, progressive or stationary, to the third order of approximation, Proc. Roy Soc. London A, Volume 91 (1915), pp. 345-353

[10] I. Tadjbaksh; J.B. Keller Standing surface waves of finite amplitude, J. Fluid Mech., Volume 8 (1960), pp. 442-451

[11] Ya.I. Sekerkh-Zenkovich On the theory of standing waves of finite amplitude, Doklady AN USSR, Volume 58 (1947), pp. 551-553

[12] C. Amick; J. Toland The semi-analytic theory of standing waves, Proc. Roy. Soc. London A, Volume 411 (1987), pp. 123-138

Cited by Sources:

Comments - Policy