In this short Note we present the original Boussinesq's contribution to the nonlinear theory of the two dimensional standing gravity water wave problem, which he defined as ‘le clapotis’.
Dans cette courte Note on présente, en la situant dans le contexte actuel, la contribution originale de Boussinesq sur la théorie non linéaire du « clapotis ».
Accepted:
Published online:
Mot clés : Mécanique des fluides, Écoulements d'un fluide non visqueux, Ondes stationnaires, Bifurcations
Gérard Iooss 1
@article{CRMECA_2007__335_9-10_584_0, author = {G\'erard Iooss}, title = {J. {Boussinesq} and the standing water waves problem}, journal = {Comptes Rendus. M\'ecanique}, pages = {584--589}, publisher = {Elsevier}, volume = {335}, number = {9-10}, year = {2007}, doi = {10.1016/j.crme.2006.11.007}, language = {en}, }
Gérard Iooss. J. Boussinesq and the standing water waves problem. Comptes Rendus. Mécanique, Volume 335 (2007) no. 9-10, pp. 584-589. doi : 10.1016/j.crme.2006.11.007. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2006.11.007/
[1] Nash–Moser theory for standing water waves, Arch. Rat. Mech. Anal., Volume 159 (2001) no. 1, pp. 1-83
[2] Standing waves on an infinitely deep perfect fluid under gravity, Arch. Rat. Mech. Anal., Volume 177 (2005) no. 3, pp. 367-478
[3] Existence of multimodal standing gravity waves, J. Math. Fluid Mech., Volume 7 (2005), p. S349-S364
[4] The origins of water wave theory, Annu. Rev. Fluid Mech., Volume 36 (2004), pp. 1-28
[5] Théorie des ondes liquides périodiques, Mémoires présentés par divers savants à l'Académie des Sciences. Paris, Volume 20 (1872), pp. 509-616
[6] A semi-analytic solution for nonlinear standing waves in deep water, J. Fluid Mech., Volume 107 (1981), pp. 147-171
[7] Essai sur la théorie des eaux courantes, Mémoires présentés par divers savants à l'Académie des Sciences. Paris, Volume 23 (1877) no. 1, pp. 1-660
[8] On the theory of oscillatory waves, Trans. Camb. Phil. Soc., Volume 8 (1847), pp. 441-455
[9] Deep water waves, progressive or stationary, to the third order of approximation, Proc. Roy Soc. London A, Volume 91 (1915), pp. 345-353
[10] Standing surface waves of finite amplitude, J. Fluid Mech., Volume 8 (1960), pp. 442-451
[11] On the theory of standing waves of finite amplitude, Doklady AN USSR, Volume 58 (1947), pp. 551-553
[12] The semi-analytic theory of standing waves, Proc. Roy. Soc. London A, Volume 411 (1987), pp. 123-138
Cited by Sources:
Comments - Policy