[Équations de Boussinesq dissipatives]
La théorie classique des vagues repose sur la théorie des écoulements non-visqueux. Cependant il est important d'inclure les effets visqueux dans certaines applications. Deux modèles sont ainsi proposés pour rajouter des effets dissipatifs dans le contexte des équations de Boussinesq, qui incluent les effets de faible dispersion et faible nonlinéarité dans le cadre des équations en eau peu profonde. Les équations de Boussinesq dissipatives sont ensuite intégrées numériquement.
The classical theory of water waves is based on the theory of inviscid flows. However it is important to include viscous effects in some applications. Two models are proposed to add dissipative effects in the context of the Boussinesq equations, which include the effects of weak dispersion and nonlinearity in a shallow water framework. The dissipative Boussinesq equations are then integrated numerically.
Accepté le :
Publié le :
Mots-clés : Mécanique des fluides numérique, Équations de Boussinesq, Dissipation, Viscosité, Approximation onde longue, Propagation de tsunami
Denys Dutykh 1 ; Frédéric Dias 1
@article{CRMECA_2007__335_9-10_559_0, author = {Denys Dutykh and Fr\'ed\'eric Dias}, title = {Dissipative {Boussinesq} equations}, journal = {Comptes Rendus. M\'ecanique}, pages = {559--583}, publisher = {Elsevier}, volume = {335}, number = {9-10}, year = {2007}, doi = {10.1016/j.crme.2007.08.003}, language = {en}, }
Denys Dutykh; Frédéric Dias. Dissipative Boussinesq equations. Comptes Rendus. Mécanique, Joseph Boussinesq, a Scientist of bygone days and present times, Volume 335 (2007) no. 9-10, pp. 559-583. doi : 10.1016/j.crme.2007.08.003. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2007.08.003/
[1] Théorie générale des mouvements qui sont propagés dans un canal rectangulaire horizontal, C. R. Acad. Sci. Paris, Volume 73 (1871), pp. 256-260
[2] Théorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond, J. Math. Pures Appl., Volume 17 (1872), pp. 55-108
[3] Théorie du mouvement non-permanent des eaux, avec application aux crues des rivières et à l'introduction des marées dans leur lit, C. R. Acad. Sci. Paris, Volume 73 (1871), pp. 147-154
[4] Long waves on a beach, J. Fluid Mech., Volume 27 (1967), pp. 815-827
[5] Alternative form of Boussinesq equations for nearshore wave propagation, J. Waterway, Port, Coastal and Ocean Engrg., Volume 119 (1993), pp. 618-638
[6] A fully nonlinear Boussinesq model for surface waves. Part 1. Highly nonlinear unsteady waves, J. Fluid Mech., Volume 294 (1995), pp. 71-92
[7] Higher-order Boussinesq-type equations for surface gravity waves: Derivation and analysis, Phil. Trans. R. Soc. Lond. A, Volume 356 (1998), pp. 3123-3184
[8] Boussinesq models and applications to nearshore wave propagation, surfzone processes and wave-induced currents (V.C. Lakhan, ed.), Advances in Coastal Modeling, Elsevier, 2003, pp. 1-41
[9] Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. I: Derivation and linear theory, J. Nonlinear Sci., Volume 12 (2002), pp. 283-318
[10] Hydrodynamics, Cambridge University Press, 1932
[11] Lois de l'extinction de la houle en haute mer, C. R. Acad. Sci. Paris, Volume 121 (1895), pp. 15-20
[12] An evaluation of a model equation for water waves, Phil. Trans. R. Soc. Lond. A, Volume 302 (1981), pp. 457-510
[13] Essai sur la théorie des eaux courantes, Mémoires présentés par divers Savants à l'Académie des Sciences, Volume 23 (1877), pp. 1-680
[14] The effect of a surface layer of viscous fluid on the wave resistance of a thin ship, J. Ship Res., Volume 18 (1974), pp. 265-271
[15] Theory of weakly damped stokes waves: a new formulation and its physical interpretation, J. Fluid Mech., Volume 235 (1992), pp. 319-324
[16] Free-surface wave damping due to viscosity and surfactants, Eur. J. Mech. B Fluids, Volume 21 (2002), pp. 207-224
[17] Nonlinear evolution of water surface waves: the frequency down-shift phenomenon, Contemp. Math., Volume 200 (1996), pp. 157-171
[18] F. Dias, A.I. Dyachenko, V.E. Zakharov, Theory of weakly damped free-surface flows: a new formulation based on potential flow solutions, Phys. Lett. A (2007), in press
[19] Numerical simulations of the quasistationary stage of ripple excitation by steep-capillary waves, J. Fluid Mech., Volume 230 (1991), pp. 339-353
[20] Boussinesq modelling of wave transformation, breaking, and runup, J. Waterway, Port, Coastal and Ocean Engrg., Volume 126 (2000), pp. 39-47
[21] The run-up of nonbreaking and breaking solitary waves, Coastal Engrg., Volume 15 (1991), pp. 205-246
[22] Numerical model for tsunami runup, J. Waterway, Port, Coastal and Ocean Engrg., Volume 96 (1970), pp. 701-719
[23] Viscous potential free-surface flows in a fluid layer of finite depth, C. R. Acad. Sci. Paris, Ser. I, Volume 345 (2007), pp. 113-118
[24] Moderate and steep Faraday waves: instabilities, modulation and temporal asymmetries, J. Fluid Mech., Volume 329 (1996), pp. 275-307
[25] Pattern formation in weakly damped parametric surface waves, J. Fluid Mech., Volume 336 (1997), pp. 301-330
[26] Water waves generated by a moving bottom (A. Kundu, ed.), Tsunami and Nonlinear Waves, Springer Verlag (Geo Sci.), 2007, pp. 63-94
[27] The long-wave paradox in the theory of gravity waves, Proc. Camb. Phil. Soc., Volume 49 (1953), pp. 685-694
[28] M. Benoit, Contribution à l'étude des états de mer et des vagues, depuis l'océan jusqu'aux ouvrages cotiers, 2006, Mémoire d'habilitation à diriger des recherches
[29] Linear and Nonlinear Waves, John Wiley & Sons Inc., New York, 1999
[30] Lectures on nonlinear wave motion, Lectures in Appl. Math., vol. 15, Amer. Math. Soc., Providence, RI, 1974, pp. 3-47
[31] Equations for water waves and the approximation behind them, Waves on Beaches and Resulting Sediment Transport, Academic Press, New York, 1972, pp. 95-121
[32] R.J. Murray, Short wave modelling using new equations of Boussinesq type, in: Proc. 9th Australian Conf. on Coast. and Oc. Engrg., 1989
[33] A new form of the Boussinesq equations with improved linear dispersion characteristics, Coastal Engrg., Volume 15 (1991), pp. 371-388
[34] A unified model for the evolution of nonlinear water waves, J. Comput. Phys., Volume 56 (1984), pp. 203-236
[35] Exact traveling-wave solutions to bidirectional wave equations, Intern. J. Theoret. Phys., Volume 37 (1998), pp. 1547-1567
[36] Finite amplitude instabilities of partial difference equations, SIAM J. Appl. Math., Volume 33 (1977), pp. 133-160
- Shallow Water Models and Their Analytical Properties, Analytical Properties of Nonlinear Partial Differential Equations, Volume 10 (2024), p. 79 | DOI:10.1007/978-3-031-53074-6_3
- Evolution of water wave packets by wind in shallow water, Journal of Fluid Mechanics, Volume 996 (2024), p. 25 (Id/No a4) | DOI:10.1017/jfm.2024.616 | Zbl:7929076
- The Propagation Velocity and Influences of Environmental Factors of Deterministic Sea Wave Prediction in the Long Crest Wave, Journal of Marine Science and Engineering, Volume 12 (2024) no. 4, p. 633 | DOI:10.3390/jmse12040633
- On a Class of Nonlinear Waves in Microtubules, Mathematics, Volume 12 (2024) no. 22, p. 3578 | DOI:10.3390/math12223578
- Oscillatory and regularized shock waves for a modified Serre-Green-Naghdi system, Studies in Applied Mathematics, Volume 153 (2024) no. 1, p. 30 (Id/No e12694) | DOI:10.1111/sapm.12694 | Zbl:1547.35449
- Oscillatory and regularized shock waves for a dissipative Peregrine–Boussinesq system, IMA Journal of Applied Mathematics, Volume 88 (2023) no. 4, p. 602 | DOI:10.1093/imamat/hxad030
- A two-layer viscous Boussinesq-type model for surface waves: Derivation, analysis, numerical implementation, and verification, Physics of Fluids, Volume 35 (2023) no. 3 | DOI:10.1063/5.0141982
- On the motion of gravity-capillary waves with odd viscosity, Journal of Nonlinear Science, Volume 32 (2022) no. 3, p. 33 (Id/No 28) | DOI:10.1007/s00332-022-09786-w | Zbl:1490.35317
- Numerical Study on the Reflection of a Solitary Wave by a Vertical Wall Using the Improved Boussinesq Equation with Stokes Damping, Journal of the Society of Naval Architects of Korea, Volume 59 (2022) no. 2, p. 64 | DOI:10.3744/snak.2022.59.2.64
- Well-posedness of the water-wave with viscosity problem, Journal of Differential Equations, Volume 276 (2021), pp. 96-148 | DOI:10.1016/j.jde.2020.12.019 | Zbl:1458.35331
- Numerical modelling of solitary wave and structure interactions using level-set and immersed boundary methods by adopting adequate inlet boundary conditions, Journal of Hydraulic Research, Volume 59 (2021) no. 4, p. 559 | DOI:10.1080/00221686.2020.1818303
- Global well-posedness and decay for viscous water wave models, Physics of Fluids, Volume 33 (2021) no. 10 | DOI:10.1063/5.0065095
- Numerical Simulation on a Globally Flat Space, Dispersive Shallow Water Waves (2020), p. 45 | DOI:10.1007/978-3-030-46267-3_2
- Well-posedness of water wave model with viscous effects, Proceedings of the American Mathematical Society, Volume 148 (2020) no. 12, pp. 5181-5191 | DOI:10.1090/proc/15219 | Zbl:1450.35215
- Symmetries of the shallow water equations in the Boussinesq approximation, Communications in Nonlinear Science and Numerical Simulation, Volume 67 (2019), pp. 1-12 | DOI:10.1016/j.cnsns.2018.06.028 | Zbl:1456.76030
- Models for damped water waves, SIAM Journal on Applied Mathematics, Volume 79 (2019) no. 6, pp. 2530-2550 | DOI:10.1137/19m1262899 | Zbl:1431.35126
- Solitary wave solution of the nonlinear KdV-Benjamin-Bona-Mahony-Burgers model via two meshless methods, The European Physical Journal Plus, Volume 134 (2019) no. 7 | DOI:10.1140/epjp/i2019-12748-1
- On some model equations for pulsatile flow in viscoelastic vessels, Wave Motion, Volume 90 (2019), pp. 139-151 | DOI:10.1016/j.wavemoti.2019.05.004 | Zbl:1524.76541
- Dispersive shallow water wave modelling. II: Numerical simulation on a globally flat space, Communications in Computational Physics, Volume 23 (2018) no. 1, pp. 30-92 | DOI:10.4208/cicp.oa-2016-0179b | Zbl:1488.76020
- Numerical modelling of surface water wave interaction with a moving wall, Communications in Computational Physics, Volume 23 (2018) no. 5, pp. 1289-1354 | DOI:10.4208/cicp.oa-2017-0110 | Zbl:1488.76016
- Asymptotic nonlinear and dispersive pulsatile flow in elastic vessels with cylindrical symmetry, Computers Mathematics with Applications, Volume 75 (2018) no. 11, pp. 4022-4047 | DOI:10.1016/j.camwa.2018.03.011 | Zbl:1417.76047
- On the steady two-dimensional open channel flow, Journal of Interdisciplinary Mathematics, Volume 21 (2018) no. 3, p. 579 | DOI:10.1080/09720502.2015.1086136
- Hydrodynamics and two-dimensional dark lump solitons for polariton superfluids, Physical Review E, Volume 98 (2018) no. 2 | DOI:10.1103/physreve.98.022205
- Convergence analysis and numerical solution of the Benjamin-Bona-Mahony equation by Lie-Trotter splitting, Turkish Journal of Mathematics, Volume 42 (2018) no. 3, pp. 1471-1483 | DOI:10.3906/mat-1603-94 | Zbl:1424.35310
- Stability analysis of solutions for the sixth-order nonlinear Boussinesq water wave equations in two-dimensions and its applications, Chinese Journal of Physics (Taipei), Volume 55 (2017) no. 2, pp. 378-385 | DOI:10.1016/j.cjph.2017.02.007 | Zbl:1539.35187
- Conservation laws and conserved quantities for (1+1)D linearized Boussinesq equations, Communications in Nonlinear Science and Numerical Simulation, Volume 46 (2017), pp. 37-48 | DOI:10.1016/j.cnsns.2016.10.015 | Zbl:1485.35337
- Strang splitting method to Benjamin-Bona-Mahony type equations: analysis and application, Journal of Computational and Applied Mathematics, Volume 318 (2017), pp. 616-623 | DOI:10.1016/j.cam.2015.11.015 | Zbl:1357.65119
- Evolutionary Boussinesq model with nonmonotone friction and heat flux boundary conditions, Nonlinear Analysis. Real World Applications, Volume 34 (2017), pp. 403-415 | DOI:10.1016/j.nonrwa.2016.09.014 | Zbl:1354.35114
- Derivation of dissipative Boussinesq equations using the Dirichlet-to-Neumann operator approach, Mathematics and Computers in Simulation, Volume 127 (2016), pp. 80-93 | DOI:10.1016/j.matcom.2013.12.008 | Zbl:1520.35118
- Generation of 2D water waves by moving bottom disturbances, IMA Journal of Applied Mathematics, Volume 80 (2015) no. 4, p. 1235 | DOI:10.1093/imamat/hxu051
- Stability analysis of solitary wave solutions for the fourth-order nonlinear Boussinesq water wave equation, Applied Mathematics and Computation, Volume 232 (2014), pp. 1094-1103 | DOI:10.1016/j.amc.2014.01.066 | Zbl:1410.35169
- Finite volume methods for unidirectional dispersive wave models, International Journal for Numerical Methods in Fluids, Volume 71 (2013) no. 6, pp. 717-736 | DOI:10.1002/fld.3681 | Zbl:1431.65143
- On the use of the finite fault solution for tsunami generation problems, Theoretical and Computational Fluid Dynamics, Volume 27 (2013) no. 1-2, p. 177 | DOI:10.1007/s00162-011-0252-8
- A numerical analysis of a class of generalized Boussinesq-type equations using continuous/discontinuous FEM, International Journal for Numerical Methods in Fluids, Volume 69 (2012) no. 7, pp. 1186-1218 | DOI:10.1002/fld.2631 | Zbl:1253.76062
- Step soliton generalized solutions of the shallow water equations, Journal of Applied Mathematics, Volume 2012 (2012), p. 24 (Id/No 910659) | DOI:10.1155/2012/910659 | Zbl:1251.35077
- Solitons and other nonlinear waves for the perturbed Boussinesq equation with power law nonlinearity, Journal of King Saud University - Science, Volume 24 (2012) no. 3, p. 237 | DOI:10.1016/j.jksus.2011.05.001
- The VOLNA code for the numerical modeling of tsunami waves: generation, propagation and inundation, European Journal of Mechanics. B. Fluids, Volume 30 (2011) no. 6, pp. 598-615 | DOI:10.1016/j.euromechflu.2011.05.005 | Zbl:1258.76036
- Dispersive wave runup on non-uniform shores, Finite Volumes for Complex Applications VI Problems Perspectives, Volume 4 (2011), p. 389 | DOI:10.1007/978-3-642-20671-9_41
- Shallow water equations for large bathymetry variations, Journal of Physics A: Mathematical and Theoretical, Volume 44 (2011) no. 33, p. 332001 | DOI:10.1088/1751-8113/44/33/332001
- Landslide‐generated tsunamis at Réunion Island, Journal of Geophysical Research: Earth Surface, Volume 115 (2010) no. F4 | DOI:10.1029/2009jf001381
- A bound on oscillations in an unsteady undular bore, Applicable Analysis, Volume 88 (2009) no. 12, p. 1701 | DOI:10.1080/00036810903397412
- On the Korteweg-de Vries approximation for uneven bottoms, European Journal of Mechanics. B. Fluids, Volume 28 (2009) no. 2, pp. 234-252 | DOI:10.1016/j.euromechflu.2008.10.003 | Zbl:1156.76354
- Visco-potential free-surface flows and long wave modelling, European Journal of Mechanics. B. Fluids, Volume 28 (2009) no. 3, pp. 430-443 | DOI:10.1016/j.euromechflu.2008.11.003 | Zbl:1167.76323
- An efficient flexible-order model for 3D nonlinear water waves, Journal of Computational Physics, Volume 228 (2009) no. 6, pp. 2100-2118 | DOI:10.1016/j.jcp.2008.11.028 | Zbl:1280.76024
- Boussinesq systems in two space dimensions over a variable bottom for the generation and propagation of tsunami waves, Mathematics and Computers in Simulation, Volume 80 (2009) no. 4, pp. 860-873 | DOI:10.1016/j.matcom.2009.08.029 | Zbl:1256.35089
- Group and phase velocities in the free-surface visco-potential flow: new kind of boundary layer induced instability, Physics Letters. A, Volume 373 (2009) no. 36, pp. 3212-3216 | DOI:10.1016/j.physleta.2009.07.029 | Zbl:1233.76043
- Viscous potential free-surface flows in a fluid layer of finite depth, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 345 (2007) no. 2, pp. 113-118 | DOI:10.1016/j.crma.2007.06.007 | Zbl:1117.76023
Cité par 47 documents. Sources : Crossref, zbMATH
Commentaires - Politique