Symmetries, i.e. transformations which leave the set of the solutions of the Navier–Stokes equations unchanged, play an important role in turbulence (conservation laws, wall laws, …). They should not be destroyed by turbulence models. The symmetries of the heat convection equations are then presented, for a non-isothermal fluid. Next, common subgrid stress tensor and flux models are analyzed, using the symmetry approach.
Les symétries, c'est-à-dire les transformations laissant invariant l'ensemble des solutions des équations, jouent un rôle important dans la turbulence (lois de conservation, lois de paroi, …). Elles ne devraient pas être détruites par l'introduction des modèles de turbulence dans les équations. Dans cette Note, on analyse l'invariance des modèles se sous-maille pour la convection thermique sous l'action du groupe de symétrie des équations non filtrées.
Accepted:
Published online:
Mot clés : Turbulence, Convection thermique, Modèles de sous-maille, Groupe de symétrie
Dina Razafindralandy 1; Aziz Hamdouni 1
@article{CRMECA_2007__335_4_225_0, author = {Dina Razafindralandy and Aziz Hamdouni}, title = {Analysis of subgrid models of heat convection by symmetry group theory}, journal = {Comptes Rendus. M\'ecanique}, pages = {225--230}, publisher = {Elsevier}, volume = {335}, number = {4}, year = {2007}, doi = {10.1016/j.crme.2007.03.004}, language = {en}, }
Dina Razafindralandy; Aziz Hamdouni. Analysis of subgrid models of heat convection by symmetry group theory. Comptes Rendus. Mécanique, Volume 335 (2007) no. 4, pp. 225-230. doi : 10.1016/j.crme.2007.03.004. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2007.03.004/
[1] M. Oberlack, Invariant modeling in large-eddy simulation of turbulence, in: Annual Research Briefs, Stanford University, 1997
[2] D. Razafindralandy, Contribution à l'étude mathématique et numérique de la simulation des grandes échelles, PhD, Université de La Rochelle, 2005
[3] D. Razafindralandy, A. Hamdouni, M. Oberlack, Analysis and development of subgrid turbulence models preserving the symmetry properties of Navier–Stokes equations, Eur. J. Mech. B (2006), in press
[4] Subgrid models preserving the symmetry group of Navier–Stokes equations, C. R. Mecanique, Volume 333 (2005), pp. 481-486
[5] Symmetries of the Navier–Stokes equations and their applications for subgrid-models in large eddy simulation of turbulence (A. Gyr; W. Kinzelbach; A. Tsinober, eds.), Fundamental Problematic Issues in Turbulence, Birkhäuser-Verlag, 1999
[6] E. Nœther, Invariante Variationsprobleme, in: Königliche Gesellschaft der Wissenschaften, Göttingen, 1918, pp. 235–257
[7] Symmetries, invariance and scaling-laws in inhomogeneous turbulent shear flows, Flow Turbulence Combust., Volume 62 (1999) no. 2, pp. 111-135
[8] Application of equivalence transformations to inertial subrange of turbulence, Lie Group Appl., Volume 1 (1994) no. 1, pp. 232-240
[9] Symmetry reduction and exact solutions of the Navier–Stokes equations I, J. Nonlin. Math. Phys., Volume 1 (1994) no. 1, pp. 75-113
[10] Symmetry invariant subgrid models (F. Lamballais; M. Guerts, eds.), Direct and Large-Eddy Simulation, vol. 6, Springer Science, France, 2006
[11] A class of subgrid-scale models preserving the symmetry group of Navier–Stokes equations, Comm. Nonlinear Sci. Numer. Simulation, Volume 12 (2007), pp. 243-253
[12] Applications of Lie groups to Differential Equations, Graduate Texts in Mathematics, Springer-Verlag, New York, 1986
[13] A proposed modification of the Germano subgrid-scale closure method, Phys. Fluids A, Volume 4 (1992) no. 3, pp. 633-635
[14] Numerical simulation of the turbulent Rayleigh–Bénard problem using subgrid modelling, J. Fluid Mech., Volume 158 (1985), pp. 245-268
[15] S.-H. Peng, L. Davidson, Comparison of subgrid-scale models in LES for turbulent convection flow with heat transfer, in: 2nd EF Conference in Turbulent Heat Transfer, 1, Manchester, United Kingdom, 1998, pp. 5.25–5.35
Cited by Sources:
Comments - Policy