Comptes Rendus
Validity conditions of the direct boundary integral equation for exterior problems of plane elasticity
Comptes Rendus. Mécanique, Volume 335 (2007) no. 4, pp. 219-224.

Writing the boundary integral equation for an exterior problem of plane elasticity has been subordinate, so far, to hypotheses on the asymptotical behaviour of solutions at infinity. The sufficient conditions met in the literature are too restrictive and do not notably cover the case when the loading has a non-zero resultant force. This difficulty can be removed by considering the problem in displacements relatively to one point located at a finite distance from the loading. Finally, this auxiliary problem allows the widening of the conditions of validity of the usual formulation of the direct integral method.

L'établissement de l'équation intégrale de frontière pour un problème extérieur d'élasticité plane nécessite des hypothèses sur le comportement à l'infini des solutions en déplacements et en contraintes. Les conditions suffisantes établies jusqu'ici sont trop restrictives et ne couvrent pas le cas d'un chargement ayant une résultante non nulle. Cette difficulté est écartée en considérant un problème en déplacement relatif. Enfin, ce problème auxiliaire permet d'étendre les conditions de validité de la formulation usuelle de la méthode intégrale directe.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2007.03.010
Keywords: Computational solid mechanics, Statics, Plane elasticity, Boundary methods, Direct method
Mot clés : Mécanique des solides numérique, Statique, Elasticité plane, Méthodes de frontière, Méthode directe

Alain Corfdir 1; Guy Bonnet 2

1 CERMES, institut Navier, ENPC, 6 et 8, avenue Blaise Pascal, 77455 Marne la Vallée cedex, France
2 Université de Marne la Vallée, laboratoire de mécanique, institut Navier, 5, boulevard Descartes, 77454 Marne la Vallée cedex, France
@article{CRMECA_2007__335_4_219_0,
     author = {Alain Corfdir and Guy Bonnet},
     title = {Validity conditions of the direct boundary integral equation for exterior problems of plane elasticity},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {219--224},
     publisher = {Elsevier},
     volume = {335},
     number = {4},
     year = {2007},
     doi = {10.1016/j.crme.2007.03.010},
     language = {en},
}
TY  - JOUR
AU  - Alain Corfdir
AU  - Guy Bonnet
TI  - Validity conditions of the direct boundary integral equation for exterior problems of plane elasticity
JO  - Comptes Rendus. Mécanique
PY  - 2007
SP  - 219
EP  - 224
VL  - 335
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crme.2007.03.010
LA  - en
ID  - CRMECA_2007__335_4_219_0
ER  - 
%0 Journal Article
%A Alain Corfdir
%A Guy Bonnet
%T Validity conditions of the direct boundary integral equation for exterior problems of plane elasticity
%J Comptes Rendus. Mécanique
%D 2007
%P 219-224
%V 335
%N 4
%I Elsevier
%R 10.1016/j.crme.2007.03.010
%G en
%F CRMECA_2007__335_4_219_0
Alain Corfdir; Guy Bonnet. Validity conditions of the direct boundary integral equation for exterior problems of plane elasticity. Comptes Rendus. Mécanique, Volume 335 (2007) no. 4, pp. 219-224. doi : 10.1016/j.crme.2007.03.010. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2007.03.010/

[1] P. Bettess Infinite Elements, Penshaw Press, Newcastle upon Tyne, England, 1991

[2] M. Bonnet Equations intégrales et éléments de frontières, applications en mécanique des solides et des fluides, CNRS Editions/Eyrolles, Paris, 1995

[3] J.O. Watson Advanced implementation of the boundary element method for two- and three-dimensional elastostatics (P.K. Banerjee; R. Butterfield, eds.), Developments in Boundary Element Methods, vol. 1, Applied Science, London, 1979, pp. 31-63

[4] M. Maiti; Bela Das; S.S. Palit Somigliana's method applied to plane problems of elastic half spaces, J. Elasticity, Volume 6 (1976), pp. 429-439

[5] C. Constanda The boundary integral equation method in plane elasticity, Proc. Amer. Math. Soc., Volume 123 (1995), pp. 3385-3396

[6] C. Constanda Direct and Indirect Boundary Integral Equation Methods, Monographs and Surveys in Pure and Applied Mathematics, vol. 107, Chapman & Hall/CRC, Boca Raton, FL, 1999

[7] P. Schiavone; C.-Q. Ru On the exterior mixed problem in plane elasticity, Math. Mech. Solids, Volume 1 (1996), pp. 335-342

[8] H.G. Poulos; E.H. Davis Elastic Solutions for Soil and Rock Mechanics, John Wiley & Sons, New York, 1974

Cited by Sources:

Comments - Policy