Comptes Rendus
Dual length scale two-equation modelling of the canopy turbulent kinetic energy wake budget
Comptes Rendus. Mécanique, Volume 335 (2007) no. 11, pp. 685-690.

Within vegetation canopies, the turbulent kinetic energy (k) budget is mainly modelled through source terms added to the free-air state formulation. The dependence of the modelled source term coefficients upon a dimensionless ratio (λ) between the mixing length for turbulent transport (lm) and the relaxation length scale (lε) of Kolmogorov's relation is proposed. Using dimensional analysis, the order of magnitude variation of the terms involved in the newly proposed model for the coefficients of these source terms are derived. When λ is a constant, this generalized model results in a similarity constant (Cε4) independent of the source term model, lending support to an earlier conjecture by Seginer.

Dans la canopée, la modélisation du bilan de sillage de l'énergie cinétique turbulente (k) repose principalement sur des termes source additionnels. Nous avons déterminé la relation entre les coefficients des modèles usuels de termes source et le rapport sans dimension (λ) entre l'échelle de longueur du transport turbulent (lm) et celle de la relation de Kolmogorov (lε). Nous avons généralisé les modèles de termes source par analyse dimensionnelle et nous avons déterminé l'ordre de grandeur de la variation des différents termes. Lorsque λ est une constante, le modèle de terme source généralisé présente une constante de similitude (Cε4) indépendante du modèle de termes source, ce qui tend à confirmer la conjecture de Seginer.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2007.07.005
Keywords: Turbulence, Dissipation, Turbid medium, Turbulence model, Vegetation canopy, Wakes
Mot clés : Turbulence, Dissipation, Couvert végétal, Milieu turbide, Modèle de turbulence, Sillages

Christophe Sanz 1; Gabriel G. Katul 2

1 3, rue du Mont Louvet, 91640 Fontenay lès Briis, France
2 Nicholas School of the Environment and Earth Sciences, Duke University, Durham, NC 27708, USA
@article{CRMECA_2007__335_11_685_0,
     author = {Christophe Sanz and Gabriel G. Katul},
     title = {Dual length scale two-equation modelling of the canopy turbulent kinetic energy wake budget},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {685--690},
     publisher = {Elsevier},
     volume = {335},
     number = {11},
     year = {2007},
     doi = {10.1016/j.crme.2007.07.005},
     language = {en},
}
TY  - JOUR
AU  - Christophe Sanz
AU  - Gabriel G. Katul
TI  - Dual length scale two-equation modelling of the canopy turbulent kinetic energy wake budget
JO  - Comptes Rendus. Mécanique
PY  - 2007
SP  - 685
EP  - 690
VL  - 335
IS  - 11
PB  - Elsevier
DO  - 10.1016/j.crme.2007.07.005
LA  - en
ID  - CRMECA_2007__335_11_685_0
ER  - 
%0 Journal Article
%A Christophe Sanz
%A Gabriel G. Katul
%T Dual length scale two-equation modelling of the canopy turbulent kinetic energy wake budget
%J Comptes Rendus. Mécanique
%D 2007
%P 685-690
%V 335
%N 11
%I Elsevier
%R 10.1016/j.crme.2007.07.005
%G en
%F CRMECA_2007__335_11_685_0
Christophe Sanz; Gabriel G. Katul. Dual length scale two-equation modelling of the canopy turbulent kinetic energy wake budget. Comptes Rendus. Mécanique, Volume 335 (2007) no. 11, pp. 685-690. doi : 10.1016/j.crme.2007.07.005. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2007.07.005/

[1] N.R. Wilson; R.H. Shaw A higher closure model for canopy flow, J. Appl. Meteorol., Volume 16 (1977), pp. 1197-1205

[2] W.J. Massman; J.C. Weil An analytical one-dimensional second-order closure model of turbulence statistics and the lagrangian time scale within and above plant canopies of arbitrary structure, Boundary-Layer Meteorol., Volume 91 (1999), pp. 81-107

[3] G.G. Katul; L. Mahrt; D. Poggi; C. Sanz One and two equation models for canopy turbulence, Boundary-Layer Meteorol., Volume 113 (2004), pp. 81-109

[4] J.J. Finnigan Turbulence in plant canopies, Annu. Rev. Fluid Mech., Volume 32 (2000), pp. 519-571

[5] J.D. Wilson A second order closure model for flow through vegetation, Boundary-Layer Meteorol., Volume 42 (1988) no. 4, pp. 371-392

[6] S.R. Green Modelling turbulent air flow in a stand of widely-spaced trees, Phoenics J., Volume 5 (1992) no. 3, pp. 294-312

[7] M. Kanda; M. Hino Organized structures in developing turbulent flow within and above a plant canopy, using a large eddy simulation, Boundary-Layer Meteorol., Volume 68 (1994), pp. 237-257

[8] J. Liu; J.M. Chen; T.A. Black; M.D. Novak E–ε modelling of turbulent air-flow downwind of a model forest edge, Boundary-Layer Meteorol., Volume 77 (1996), pp. 21-44

[9] F.S. Lien; E. Yee; J.D. Wilson Numerical modelling of the turbulent flow developing within and over a 3-d building array, part II: A mathematical foundation for a distributed drag force approach, Boundary-Layer Meteorol., Volume 114 (2005), pp. 245-285

[10] D.C. Besnard; F.H. Harlow; R.M. Rauenzahn; C. Zemach Spectral transport model for turbulence, Theor. Comp. Fluid Dyn., Volume 8 (1996) no. 1, pp. 1-35

[11] I. Seginer Aerodynamic roughness of vegetated surfaces, Boundary-Layer Meteorol., Volume 5 (1974) no. 4, pp. 383-393

[12] C. Sanz A note on kε modelling of vegetation canopy air-flows, Boundary-Layer Meteorol., Volume 108 (2003), pp. 191-197

[13] G. Therry; P. Lacarrère Improving the eddy kinetic energy model for planetary boundary layer description, Boundary-Layer Meteorol., Volume 25 (1983), pp. 63-88

[14] B.E. Launder; D.B. Spalding The numerical computation of turbulent flows, Comp. Methods Appl. Mech. Eng., Volume 3 (1974), pp. 269-289

Cited by Sources:

Comments - Policy