Comptes Rendus
Experimental study and micromechanical modeling of MMT platelet-reinforced PP nanocomposites
[Étude expérimentale et modélisation micromécanique des nanocomposites à renforts plaquettaires]
Comptes Rendus. Mécanique, Volume 335 (2007) no. 11, pp. 702-707.

Les nanocomposites à renforts plaquettaires sont des matériaux émergents à fort potentiel. Cette étude est une première étape de caractérisation et de prédiction du comportement élastique de nanocomposites à matrice Polypropylène (PP) renforcée par des nanoplaquettes d'argile de Montmorillonite (MMT). Les granules du nanocomposite ont été préalablement réalisés en mélangeant de manière uniforme les plaquettes de MMT à la matrice dans une extrudeuse à double vis sans fin. Des éprouvettes de traction, conformes à la norme ASTM 638, ont ensuite réalisées à partir de ces granules à l'aide d'un procédé de moulage par injection puis testées en traction uniaxiale. Les modules d'Young, déduits de ces essais, montrent une augmentation significative avec la fraction massique (27%) des nanoplaquettes. Une première approche de modélisation micromécanique permet de montrer que la borne de Ponte Castañeda et Willis (1995) prédit ces modules à condition de considérer un rapport d'aspect adéquat pour les plaquettes.

Nanocomposites with platelets reinforcements are emerging materials with strong potential for future engineering applications. The present study is a first step to characterize and predict the elastic behavior of Montmorillonite (MMT) clay reinforced Polypropylene (PP) nanocomposites. The pellets of nanoclay composites were made by first uniformly mixing the MMT platelets in a twin-screw extruder by the melt intercalation route. These pellets were then converted into tensile specimens as per ASTM 638 by injection molding process. From tensile tests it is shown that there is a significant increase of the Young modulus with the mass fraction (2–7%) of clay platelets. A first approach of homogenization allows to conclude that the Ponte Castañeda and Willis (1995) bound predicts the measured moduli provided that a suitable aspect ratio of the reinforcement is considered.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2007.07.007
Keywords: Solids and structures, Nanocomposites, Experimental study, Effective moduli, Homogenization
Mots-clés : Solides et structures, Nanocomposites, Étude expérimentale, Modules effectifs, Homogénéisation

Ludovic Cauvin 1 ; Naresh Bhatnagar 2 ; Mathias Brieu 1 ; Djimédo Kondo 1

1 Laboratoire de mécanique de Lille, UMR CNRS 8107, boulevard Paul-Langevin, 59655 Villeneuve d'Ascq cedex, France
2 Mechanical Engineering Department, Indian Institute of Technology, HausKhaz, New Delhi, India
@article{CRMECA_2007__335_11_702_0,
     author = {Ludovic Cauvin and Naresh Bhatnagar and Mathias Brieu and Djim\'edo Kondo},
     title = {Experimental study and micromechanical modeling of {MMT} platelet-reinforced {PP} nanocomposites},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {702--707},
     publisher = {Elsevier},
     volume = {335},
     number = {11},
     year = {2007},
     doi = {10.1016/j.crme.2007.07.007},
     language = {en},
}
TY  - JOUR
AU  - Ludovic Cauvin
AU  - Naresh Bhatnagar
AU  - Mathias Brieu
AU  - Djimédo Kondo
TI  - Experimental study and micromechanical modeling of MMT platelet-reinforced PP nanocomposites
JO  - Comptes Rendus. Mécanique
PY  - 2007
SP  - 702
EP  - 707
VL  - 335
IS  - 11
PB  - Elsevier
DO  - 10.1016/j.crme.2007.07.007
LA  - en
ID  - CRMECA_2007__335_11_702_0
ER  - 
%0 Journal Article
%A Ludovic Cauvin
%A Naresh Bhatnagar
%A Mathias Brieu
%A Djimédo Kondo
%T Experimental study and micromechanical modeling of MMT platelet-reinforced PP nanocomposites
%J Comptes Rendus. Mécanique
%D 2007
%P 702-707
%V 335
%N 11
%I Elsevier
%R 10.1016/j.crme.2007.07.007
%G en
%F CRMECA_2007__335_11_702_0
Ludovic Cauvin; Naresh Bhatnagar; Mathias Brieu; Djimédo Kondo. Experimental study and micromechanical modeling of MMT platelet-reinforced PP nanocomposites. Comptes Rendus. Mécanique, Volume 335 (2007) no. 11, pp. 702-707. doi : 10.1016/j.crme.2007.07.007. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2007.07.007/

[1] P. Ponte Castañeda; J.R. Willis The effect of spatial distribution on the effective behavior of composite materials and cracked media, J. Mech. Phys. Solids, Volume 43 (1995), pp. 1919-1951

[2] A. Usuki; M. Kawasumi; Y. Kojima; A. Okada; T. Kurauchi; O. Kamigaito Swelling behavior of montmorillonite cation exchanged for ω-amino acid bi ϵ-caprolactam, J. Mater. Res., Volume 8 (1993), pp. 1174-1178

[3] Y. Kojima; A. Usuki; M. Kawasumi; A. Okada; Y. Fukushima; T. Kurauchi; O. Kamigaito Mechanical properties of nylon-6-clay hybrid, J. Mater. Res., Volume 6 (1993), pp. 1185-1189

[4] E. Chabert, Propriétés mécaniques de nanocomposites à matrice polymère: approche expérimentale et modélisation, Thèse de Doctorat de Génie des Matériaux de l'INSA de Lyon, 2002

[5] J.M. Gloaguen; J.M. Lefebvre Plastic deformation behaviour of thermoplastic/clay nanocomposites, Polymer, Volume 42 (2001), pp. 5841-5847

[6] J.-I. Weon; H.-J. Sue Effects of clay orientation and aspect ratio on mechanical behavior of nylon-6 nanocomposite, Polymer, Volume 46 (2005), pp. 6325-6334

[7] V. Marcadon, Effets de taille et d'interphase sur le comportement mécanique de nanocomposites particulaires, Thèse de Doctorat de Mécanique et Matériaux de l'Ecole Polytechnique, 2005

[8] M. Alexandre; P. Dubois Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials, Mater. Sci. Engrg., Volume 28 (2000), pp. 1-63

[9] E.T. Thostenson; C. Li; T.W. Chou Nanocomposites in context, Comp. Sci. Tech., Volume 65 (2005), pp. 491-516

[10] F. Chavaria; D.R. Paul Comparison of nanocomposites based on nylon 6 and nylon 66, Polymer, Volume 45 (2004), pp. 8501-8515

[11] T.D. Fornes; D.R. Paul Modelling properties of nylon6/clay nanocomposites using composite theories, Polymer, Volume 44 (2003), pp. 4993-5013

[12] D. Shia; C.Y. Hui; S.D. Burnside; E.P. Giannelis An interface model for prediction of Young's modulus of layered silicate-elastomer nanocomposites, Polymer Composites, Volume 19 (1998) no. 5, pp. 608-617

[13] T. Mori; K. Tanaka Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metall., Volume 21 (1998), pp. 571-574

[14] J.C. Halpin, S.W. Tsai, Environmental factors estimation in composite materials design, AFML TR, 67-423, 1967

  • Nabor Jiménez Segura; Bernhard L.A. Pichler; Christian Hellmich Concentration tensors preserving elastic symmetry of multiphase composites, Mechanics of Materials, Volume 178 (2023), p. 104555 | DOI:10.1016/j.mechmat.2023.104555
  • Y. Zare; K. Y. Rhee Simple Modeling of Tensile Modulus for Toughened Ternary Nanocomposites, Physical Mesomechanics, Volume 24 (2021) no. 2, p. 178 | DOI:10.1134/s1029959921020077
  • Arlette A. Santiago; Joel Vargas; Luis Pérez; Carlos Corona‐García; Ismeli Alfonso Mathematical and finite element analysis estimations of the reinforcement effect on Young's modulus of polymer membrane/montmorillonite clay nanocomposites, Polymer Composites, Volume 42 (2021) no. 4, p. 2112 | DOI:10.1002/pc.25963
  • Jia-Lin Tsai; Ching-Hsiang Chang; Po-Ying Tseng; Yueh-Shin Liu; Bing-Jyun Zeng Characterizing the Young’s Moduli of Polypropylene–Acicular Wollastonite Crystal Composites: Multiscale Simulation and Experiment, Multiscale Science and Engineering, Volume 1 (2019) no. 4, p. 334 | DOI:10.1007/s42493-019-00029-x
  • P. Gelineau; S. Weigand; L. Cauvin; F. Bédoui Compatibility effects of modified montmorillonite on elastic and visco-elastic properties of nano-reinforced Poly(lactic acid): Experimental and modeling study, Polymer Testing, Volume 70 (2018), p. 441 | DOI:10.1016/j.polymertesting.2018.06.020
  • Francesco Mancarella; Robert W. Style; John S. Wettlaufer Surface tension and the Mori–Tanaka theory of non-dilute soft composite solids, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 472 (2016) no. 2189, p. 20150853 | DOI:10.1098/rspa.2015.0853
  • P. Gelineau; M. Stepień; S. Weigand; L. Cauvin; F. Bédoui Elastic properties prediction of nano-clay reinforced polymer using multi-scale modeling based on a multi-scale characterization, Mechanics of Materials, Volume 89 (2015), p. 12 | DOI:10.1016/j.mechmat.2015.03.013
  • Byoung-Ho Choi; Hoang T. Pham; Zhenwen Zhou; Alexander Chudnovsky; Shaofu Wu Investigation of the deformation and failure mechanism of organo-montmorillonite filled PP–TPO nanocomposites under uniaxial tension, Composites Part B: Engineering, Volume 43 (2012) no. 8, p. 3182 | DOI:10.1016/j.compositesb.2012.04.017
  • Fahmi Bédoui; Ludovic Cauvin Elastic properties prediction of nano-clay reinforced polymers using hybrid micromechanical models, Computational Materials Science, Volume 65 (2012), p. 309 | DOI:10.1016/j.commatsci.2012.07.023
  • Ikilem Gocek; Sabit Adanur Effect of Nanoclay Amount and Compatibilizer Presence on Thermal, Morphological and Mechanical Behaviour of Nanoclay Reinforced Composite Polypropylene Cast Film, Materials Testing, Volume 54 (2012) no. 5, p. 318 | DOI:10.3139/120.110335
  • L. Cauvin; D. Kondo; M. Brieu; N. Bhatnagar Corrigendum to “Mechanical properties of polypropylene layered silicate nanocomposites: Characterization and micro-macro modeling” [Polymer Test 29 (April 2010) pp. 245–250], Polymer Testing, Volume 31 (2012) no. 8, p. 1140 | DOI:10.1016/j.polymertesting.2012.07.009
  • Flavia Jarek; Dayane M. Reis; Raquel S. Mauler; Ronilson V. Barbosa; Juliana R. Kloss Characterization of Natural and Modified Clays to the Development of Polymeric Nanocomposites, Macromolecular Symposia, Volume 299-300 (2011) no. 1, p. 124 | DOI:10.1002/masy.200900057
  • S. Brisard; L. Dormieux; D. Kondo Hashin–Shtrikman bounds on the bulk modulus of a nanocomposite with spherical inclusions and interface effects, Computational Materials Science, Volume 48 (2010) no. 3, p. 589 | DOI:10.1016/j.commatsci.2010.02.027
  • K Hariprasad; M Senthilkumar, Frontiers in Automobile and Mechanical Engineering -2010 (2010), p. 16 | DOI:10.1109/fame.2010.5714792
  • V. Selvakumar; K. Palanikumar; K. Palanivelu Studies on Mechanical Characterization of Polypropylene/Na+-MMT Nanocomposites, Journal of Minerals and Materials Characterization and Engineering, Volume 09 (2010) no. 08, p. 671 | DOI:10.4236/jmmce.2010.98048
  • L. Cauvin; D. Kondo; M. Brieu; N. Bhatnagar Mechanical behavior of a PP platelet-reinforced nanocomposite: Experimental characterization and two scale modeling of linear and non-linear response, Materials Science and Engineering: A, Volume 527 (2010) no. 4-5, p. 1102 | DOI:10.1016/j.msea.2009.09.036
  • L. Cauvin; D. Kondo; M. Brieu; N. Bhatnagar Mechanical properties of polypropylene layered silicate nanocomposites: Characterization and micro-macro modelling, Polymer Testing, Volume 29 (2010) no. 2, p. 245 | DOI:10.1016/j.polymertesting.2009.11.007
  • Ludovic Cauvin; Djimedo Kondo; Mathias Brieu; Naresh Bhatnagar Micromechanical modeling and experimental characterization of the non linear behavior of platelet-reinforced nanocomposites, Mécanique Industries, Volume 10 (2009) no. 3-4, p. 291 | DOI:10.1051/meca/2009066

Cité par 18 documents. Sources : Crossref

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: