Comptes Rendus
Ductile damage of porous materials with two populations of voids
Comptes Rendus. Mécanique, Volume 336 (2008) no. 1-2, pp. 245-259.

This study is devoted to the modelling of ductile damage in uranium dioxide. This polycrystalline material contains two populations of voids of well separated size. The problem addressed here is the prediction of the effective flow surface of a Gurson material containing randomly oriented oblate voids. The case of spherical voids is considered first and the variational approach of Gurson is generalized by adding a compressible component to his original velocity field. The case of aligned oblate voids is then considered and a suitable generalization of a velocity field due to Gologanu et al. (ASME J. Engrg. Mater. Technol. 116 (1994) 290–297) is proposed. The extension to randomly oriented voids is achieved by averaging over all orientations. In each case, rigorous upper bounds and approximate estimates are derived and compared (in the case of spherical voids) with Finite Element simulations.

Cette étude est consacrée à la modélisation de l'endommagement ductile dans l'oxyde d'uranium. Ce matériau polycristallin présente deux familles de cavités de tailles très différentes. Le problème est abordé ici comme la recherche d'un critère de plasticité pour un matériau de Gurson contenant des cavités ellipsoïdales aplaties distribuées aléatoirement. Dans un premier temps, le cas des cavités sphériques est examiné. La démarche variationnelle de Gurson est reprise en ajoutant une composante compressible au champ de vitesse de Gurson. Cette démarche est ensuite étendue aux ellipsoïdes aplatis et alignés en reprenant et en complétant un champ de vitesse proposé par Gologanu et al. (ASME J. Engrg. Mater. Technol. 116 (1994) 290–297). Enfin l'extension aux ellipsoïdes orientés aléatoirement se fait par une prise de moyenne appropriée sur les orientations. Dans chaque cas, des bornes supérieures rigoureuses ainsi que des estimations sont proposées et comparées (seulement dans le cas des cavités sphériques) avec des calculs par éléments finis.

Published online:
DOI: 10.1016/j.crme.2007.11.017
Keywords: Damage, Plasticity, Micromechanics
Mot clés : Endommagement, Plasticité, Micromécanique

Pierre-Guy Vincent 1, 2; Yann Monerie 1; Pierre Suquet 2

1 Institut de radioprotection et de sûreté nucléaire, B.P. 3, 13115 Saint-Paul-lez-Durance cedex, France
2 Laboratoire de mécanique et d'acoustique, 31, chemin Joseph-Aiguier, 13402 Marseille cedex 20, France
@article{CRMECA_2008__336_1-2_245_0,
     author = {Pierre-Guy Vincent and Yann Monerie and Pierre Suquet},
     title = {Ductile damage of porous materials with two populations of voids},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {245--259},
     publisher = {Elsevier},
     volume = {336},
     number = {1-2},
     year = {2008},
     doi = {10.1016/j.crme.2007.11.017},
     language = {en},
}
TY  - JOUR
AU  - Pierre-Guy Vincent
AU  - Yann Monerie
AU  - Pierre Suquet
TI  - Ductile damage of porous materials with two populations of voids
JO  - Comptes Rendus. Mécanique
PY  - 2008
SP  - 245
EP  - 259
VL  - 336
IS  - 1-2
PB  - Elsevier
DO  - 10.1016/j.crme.2007.11.017
LA  - en
ID  - CRMECA_2008__336_1-2_245_0
ER  - 
%0 Journal Article
%A Pierre-Guy Vincent
%A Yann Monerie
%A Pierre Suquet
%T Ductile damage of porous materials with two populations of voids
%J Comptes Rendus. Mécanique
%D 2008
%P 245-259
%V 336
%N 1-2
%I Elsevier
%R 10.1016/j.crme.2007.11.017
%G en
%F CRMECA_2008__336_1-2_245_0
Pierre-Guy Vincent; Yann Monerie; Pierre Suquet. Ductile damage of porous materials with two populations of voids. Comptes Rendus. Mécanique, Volume 336 (2008) no. 1-2, pp. 245-259. doi : 10.1016/j.crme.2007.11.017. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2007.11.017/

[1] F. Dherbey; F. Louchet; A. Mocellin; S. Leclercq Elevated temperature creep of polycrystalline uranium dioxide: from microscopic mechanisms to macroscopic behaviour, Acta Mater., Volume 50 (2002), pp. 1495-1505

[2] J.B. Leblond Mécanique de la rupture fragile et ductile, Hermès, Paris, 2002

[3] A.L. Gurson Continuum theory of ductile rupture by void nucleation and growth: Part I—Yield criteria and flow rules for porous ductile media, J. Engrg. Mater. Technol., Volume 99 (1977), pp. 2-15

[4] V. Tvergaard Material failure by void growth to coalescence (J.W. Hutchinson; T.Y. Wu, eds.), Advances in Applied Mechanics, vol. 27, 1990, pp. 83-151

[5] J.B. Leblond; G. Perrin; P. Suquet Exact results and approximate models for porous viscoplastic solids, Int. J. Plasticity, Volume 10 (1994), pp. 213-235

[6] M. Gologanu; J.B. Leblond; J. Devaux Approximate models for ductile metals containing non-spherical voids—Case of axisymmetric oblate ellipsoidal cavities, ASME J. Engrg. Mater. Technol., Volume 116 (1994), pp. 290-297

[7] G. Perrin; J.B. Leblond Analytical study of a hollow sphere made of plastic porous material and subjected to hydrostatic tension. Application to some problems in ductile fracture of metals, Int. J. Plasticity, Volume 6 (1990), pp. 677-699

[8] G. Perrin, Contribution à l'étude théorique et numérique de la rupture ductile des métaux, PhD thesis, Ecole Polytechnique, Palaiseau, 1992

[9] G. Perrin; J.B. Leblond Accelerated void growth in porous ductile solids containing two populations of cavities, Int. J. Plasticity, Volume 16 (2000), pp. 91-120

[10] J.L. Chaboche; P. Suquet; J. Besson Endommagement et changement d'échelle (M. Bornert; T. Bretheau; P. Gilormini, eds.), Homogénéisation en mécanique des matériaux, vol. 2, Hermès Science Publications, Paris, 2001

[11] P. Suquet On bounds for the overall potential of power law materials containing voids with arbitrary shape, Mech. Res. Comm., Volume 19 (1992), pp. 51-58

[12] J.C. Michel; H. Moulinec; P. Suquet Effective properties of composite materials with periodic microstructure: a computational approach, Comp. Meth. Appl. Mech. Engrg., Volume 172 (1999), pp. 109-143

[13] N. Bilger; F. Auslender; M. Bornert; R. Masson New bounds and estimates for porous media with rigid perfectly plastic matrix, C. R. Mecanique, Volume 330 (2002), pp. 127-132

[14] J.M. Gatt; Y. Monerie; D. Laux; D. Baron Elastic behavior of porous ceramics: application to nuclear fuel materials, J. Nuclear Mater., Volume 336 (2005), pp. 145-155

[15] P. Ponte Castañeda; J.R. Willis The effect of spatial distribution on the effective behavior of composite materials and cracked media, J. Mech. Phys. Solids, Volume 43 (1995), pp. 1919-1951

[16] G.W. Milton The Theory of Composites, Cambridge University Press, Cambridge, 2002

[17] M. Gărăjeu, Contribution à l'étude du comportement non linéaire de milieux poreux avec ou sans renfort, PhD thesis, Aix-Marseille 2 University, 1995

[18] V. Monchiet; E. Charkaluk; D. Kondo An improvement of Gurson-type models of porous materials by using Eshelby-like trial velocity fields, C. R. Mecanique, Volume 335 (2007), pp. 32-41

Cited by Sources:

Comments - Policy