Comptes Rendus
One-dimensional modeling of piping flow erosion
Comptes Rendus. Mécanique, Volume 336 (2008) no. 9, pp. 731-736.

A process called “piping”, which often occurs in water-retaining structures (earth-dams, dykes, levees), involving the formation and progression of a continuous tunnel between the upstream and downstream sides, is one of the main cause of structure failure. Starting with the diphasic flow volume equations and the jump equations including the erosion processes, a simplified one-dimensional model for two-phase piping flow erosion was developed. The numerical simulation based on constant input and output pressures showed that the particle concentration can be a significant factor at the very beginning of the process, resulting in the enlargement of the hole at the exit. However, it was concluded that this influence is a secondary factor: the dilute flow assumption, which considerably simplifies the description, is relevant here.

Un phénomène appelé renard hydraulique concerne de nombreux ouvrages hydrauliques (barrages, digues, levées), conduisant à la formation et au développement d'un tunnel continu entre l'amont et l'aval. C'est l'une des causes principales de rupture. A partir des équations d'écoulement diphasique, et des équations de saut avec érosion, nous proposons un modèle simplifié unidimensionnel pour les écoulements denses de conduit avec érosion. Les résultats numériques avec pression constante en entrée et en sortie montrent que l'influence de la concentration en particules solides peut être significative au début de l'évolution, conduisant à un élargissement du trou en sortie. Toutefois, nous concluons que cette influence est du second ordre : l'hypothèse d'écoulement dilué, qui simplifie considérablement la description, est pertinente.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2008.06.007
Keywords: Fluid mechanics, Two-phase flow, Internal erosion, Piping flow erosion
Mots-clés : Mécanique des fluides, Écoulements diphasiques, Érosion interne, Renard hydraulique

Damien Lachouette 1, 2; Frédéric Golay 2; Stéphane Bonelli 1, 3

1 Cemagref, 3275, route de Cezanne, CS 40061, 13182 Aix-en-Provence cedex 5, France
2 Imath, Université du Sud Toulon-Var-ISITV, avenue Georges-Pompidou, B.P. 56, 83162 La Valettedu Var, France
3 Laboratoire de mécanique et d'acoustique (UPR-CNRS 7071), 31, chemin Joseph-Aiguier, 13402 Marseille, France
@article{CRMECA_2008__336_9_731_0,
     author = {Damien Lachouette and Fr\'ed\'eric Golay and St\'ephane Bonelli},
     title = {One-dimensional modeling of piping flow erosion},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {731--736},
     publisher = {Elsevier},
     volume = {336},
     number = {9},
     year = {2008},
     doi = {10.1016/j.crme.2008.06.007},
     language = {en},
}
TY  - JOUR
AU  - Damien Lachouette
AU  - Frédéric Golay
AU  - Stéphane Bonelli
TI  - One-dimensional modeling of piping flow erosion
JO  - Comptes Rendus. Mécanique
PY  - 2008
SP  - 731
EP  - 736
VL  - 336
IS  - 9
PB  - Elsevier
DO  - 10.1016/j.crme.2008.06.007
LA  - en
ID  - CRMECA_2008__336_9_731_0
ER  - 
%0 Journal Article
%A Damien Lachouette
%A Frédéric Golay
%A Stéphane Bonelli
%T One-dimensional modeling of piping flow erosion
%J Comptes Rendus. Mécanique
%D 2008
%P 731-736
%V 336
%N 9
%I Elsevier
%R 10.1016/j.crme.2008.06.007
%G en
%F CRMECA_2008__336_9_731_0
Damien Lachouette; Frédéric Golay; Stéphane Bonelli. One-dimensional modeling of piping flow erosion. Comptes Rendus. Mécanique, Volume 336 (2008) no. 9, pp. 731-736. doi : 10.1016/j.crme.2008.06.007. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2008.06.007/

[1] I. Vardoulakis; M. Stavropoulou; P. Papanastasiou Hydromechanical aspects of sand production problem, Transport in Porous Media, Volume 22 (1996), pp. 225-244

[2] I. Vardoulakis; P. Papanastasiou; M. Stavropoulou Sand erosion in axial flow conditions, Transport in Porous Media, Volume 45 (2001), pp. 267-281

[3] O. Brivois; S. Bonelli; R. Borghi Soil erosion in the boundary layer flow along a slope: a theoretical study, European Journal of Mechanics B/Fluids, Volume 26 (2007), pp. 707-719

[4] S. Bonelli; O. Brivois; R. Borghi; N. Benahmed On the modelling of piping erosion, Comptes Rendus de Mécanique, Volume 8–9 (2006) no. 334, pp. 555-559

[5] S. Bonelli, O. Brivois, The scaling law in the hole erosion test with a constant pressure drop, International Journal for Numerical and Analytical Methods in Geomechanics, in press, | DOI

[6] H. Schlichting Boundary Layer Theory, McGraw–Hill, New York, 1987

[7] P.-Y. Lagrée; S. Lorthois The RNS/Prandtl equations and their link with other asymptotic descriptions. Application to the computation of the maximum value of the Wall Shear Stress in a pipe, International Journal of Engineering Science, Volume 43 (2005) no. 3-4, pp. 352-378

[8] P.-Y. Julien Erosion and Sedimentation, Cambridge University Press, 1995

[9] G.I. Barenblatt; A.J. Chorin; V.M. Prostokishin Scaling laws for fully developed turbulent flow in pipes, Applied Mechanics Reviews, Volume 50 (1997) no. 7, pp. 413-429

Cited by Sources:

Comments - Policy