[Variable duale du tenseur des contraintes de Cauchy dans le cas des matériaux hyperélastiques isotropes]
Elastic materials are governed by a constitutive law relating the second Piola–Kirchhoff stress tensor Σ and the right Cauchy–Green strain tensor
Les matériaux élastiques sont régis par une loi de comportement reliant le second tenseur des contraintes de Piola–Kirchhoff Σ et le tenseur de Cauchy–Green droit
Accepté le :
Publié le :
Mots-clés : Déformation finie, Hyperélasticité isotrope, Variables duales, Déformation logarithmique, Tenseur des déformations de Hencky, Loi de comportement
Claude Vallée 1 ; Danielle Fortuné 1 ; Camelia Lerintiu 1
@article{CRMECA_2008__336_11-12_851_0, author = {Claude Vall\'ee and Danielle Fortun\'e and Camelia Lerintiu}, title = {On the dual variable of the {Cauchy} stress tensor in isotropic finite hyperelasticity}, journal = {Comptes Rendus. M\'ecanique}, pages = {851--855}, publisher = {Elsevier}, volume = {336}, number = {11-12}, year = {2008}, doi = {10.1016/j.crme.2008.10.003}, language = {en}, }
TY - JOUR AU - Claude Vallée AU - Danielle Fortuné AU - Camelia Lerintiu TI - On the dual variable of the Cauchy stress tensor in isotropic finite hyperelasticity JO - Comptes Rendus. Mécanique PY - 2008 SP - 851 EP - 855 VL - 336 IS - 11-12 PB - Elsevier DO - 10.1016/j.crme.2008.10.003 LA - en ID - CRMECA_2008__336_11-12_851_0 ER -
%0 Journal Article %A Claude Vallée %A Danielle Fortuné %A Camelia Lerintiu %T On the dual variable of the Cauchy stress tensor in isotropic finite hyperelasticity %J Comptes Rendus. Mécanique %D 2008 %P 851-855 %V 336 %N 11-12 %I Elsevier %R 10.1016/j.crme.2008.10.003 %G en %F CRMECA_2008__336_11-12_851_0
Claude Vallée; Danielle Fortuné; Camelia Lerintiu. On the dual variable of the Cauchy stress tensor in isotropic finite hyperelasticity. Comptes Rendus. Mécanique, Volume 336 (2008) no. 11-12, pp. 851-855. doi : 10.1016/j.crme.2008.10.003. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2008.10.003/
[1] Mathematical Elasticity, vol. 1, Three-Dimensional Elasticity, North-Holland, Amsterdam, 1988
[2] Calcul linéaire, P.U.F, Paris, 1959
[3] Lois de comportement élastique isotropes en grandes déformations, International Journal of Engineering Science, Volume 16 (1978) no. 7, pp. 451-457
[4] On the dual variable of the logarithmic strain tensor, the dual variable of the Cauchy stress tensor, and related issues, International Journal of Solids and Structures, Volume 38 (2001) no. 50–51, pp. 9221-9232
[5] The stress conjugate to logarithmic strain, International Journal of Solids and Structures, Volume 23 (1987) no. 12, pp. 1645-1656
[6] Constitutive inequalities for an isotropic elastic strain–energy function based on Hencky's logarithmic strain tensor, Proceedings of the Royal Society of London, Series A – Mathematical Physical and Engineering Sciences, Volume 457 (2001) no. 2013, pp. 2207-2226
[7] Fitting hyperelastic models to experimental data, Computational Mechanics, Volume 34 (2004) no. 6, pp. 484-502
[8] A model for finite strain elastoplasticity based on logarithmic strains – computational issues, Computer Methods in Applied Mechanics and Engineering, Volume 94 (1992) no. 1, pp. 35-61
[9] On strong ellipticity for isotropic hyperelastic materials based upon logarithmic strain, International Journal of Non-Linear Mechanics, Volume 40 (2005) no. 2–3, pp. 195-212
[10] Hencky's elasticity model and linear stress–strain relations in isotropic finite hyperelasticity, Acta Mechanica, Volume 157 (2002) no. 1–4, pp. 51-60
[11] The 3é hyperelastic model applied to the modeling of 3D impact problems, Finite Elements in Analysis and Design, Volume 43 (2006) no. 1, pp. 51-58
[12] On the form of the inverted stress–strain law for isotropic hyperelastic solids, International Journal of Non-Linear Mechanics, Volume 27 (1992) no. 3, pp. 413-421
[13] Hencky's logarithmic strain and dual stress–strain and strain–stress relations in isotropic finite hyperelasticity, International Journal of Solids and Structures, Volume 40 (2003) no. 6, pp. 1455-1463
[14] Explicit dual stress–strain and strain–stress relations of incompressible isotropic hyperelastic solids via deviatoric Hencky strain and Cauchy stress, Acta Mechanica, Volume 168 (2004) no. 1–2, pp. 21-33
[15] The theory of finite strains of a granular material, Journal of Applied Mathematics and Mechanics, Volume 71 (2007) no. 1, pp. 93-110
- Hypo-elasticity, Cauchy-elasticity, corotational stability and monotonicity in the logarithmic strain, Journal of the Mechanics and Physics of Solids (2025), p. 106074 | DOI:10.1016/j.jmps.2025.106074
- Major symmetry of the induced tangent stiffness tensor for the Zaremba–Jaumann rate and Kirchhoff stress in hyperelasticity: Two different approaches, Mathematics and Mechanics of Solids (2025) | DOI:10.1177/10812865241306703
- Fourth-order tensor calculus operations and application to continuum mechanics, Mathematics and Mechanics of Solids, Volume 28 (2023) no. 9, pp. 2029-2056 | DOI:10.1177/10812865221140939 | Zbl:8021841
- Do we need Truesdell’s empirical inequalities? On the coaxiality of stress and stretch, International Journal of Non-Linear Mechanics, Volume 112 (2019), p. 106 | DOI:10.1016/j.ijnonlinmec.2019.02.004
- Modeling and analysis of nonlinear elastoplastic behavior of compatibilized polyolefin/polyester/clay nanocomposites with emphasis on interfacial interaction exploration, Composites Science and Technology, Volume 154 (2018), p. 92 | DOI:10.1016/j.compscitech.2017.11.018
- A non-ellipticity result, or the impossible taming of the logarithmic strain measure, International Journal of Non-Linear Mechanics, Volume 102 (2018), p. 147 | DOI:10.1016/j.ijnonlinmec.2018.02.011
- Geometry of logarithmic strain measures in solid mechanics, Archive for Rational Mechanics and Analysis, Volume 222 (2016) no. 2, pp. 507-572 | DOI:10.1007/s00205-016-1007-x | Zbl:1348.74039
- The exponentiated Hencky-logarithmic strain energy. III: Coupling with idealized multiplicative isotropic finite strain plasticity, Continuum Mechanics and Thermodynamics, Volume 28 (2016) no. 1-2, pp. 477-487 | DOI:10.1007/s00161-015-0449-y | Zbl:1348.74053
- Incorporation of Dynamic Strain Aging Into a Viscoplastic Self-Consistent Model for Predicting the Negative Strain Rate Sensitivity of Hadfield Steel, Journal of Engineering Materials and Technology, Volume 138 (2016) no. 3 | DOI:10.1115/1.4033072
- Rediscovering GF Becker’s early axiomatic deduction of a multiaxial nonlinear stress–strain relation based on logarithmic strain, Mathematics and Mechanics of Solids, Volume 21 (2016) no. 7, p. 856 | DOI:10.1177/1081286514542296
- The exponentiated Hencky-logarithmic strain energy. I: Constitutive issues and rank-one convexity, Journal of Elasticity, Volume 121 (2015) no. 2, pp. 143-234 | DOI:10.1007/s10659-015-9524-7 | Zbl:1325.74028
Cité par 11 documents. Sources : Crossref, zbMATH
Commentaires - Politique