[Variable duale du tenseur des contraintes de Cauchy dans le cas des matériaux hyperélastiques isotropes]
Les matériaux élastiques sont régis par une loi de comportement reliant le second tenseur des contraintes de Piola–Kirchhoff Σ et le tenseur de Cauchy–Green droit . Les matériaux élastiques isotropes sont les seuls matériaux pour lesquels le tenseur des contraintes de Cauchy σ ne dépend que du tenseur des déformations . Dans cette Note nous revisitons la propriété suivante des matériaux isotropes hyperélastiques : si la loi de comportement reliant Σ et C dérive d'un potentiel ϕ, alors σ et sont reliés par une loi de comportement dérivant du potentiel composé . Nous donnons une preuve nouvelle et concise qui est basée sur une formule intégrale explicite exprimant la dérivée de l'exponentiel d'un tenseur.
Elastic materials are governed by a constitutive law relating the second Piola–Kirchhoff stress tensor Σ and the right Cauchy–Green strain tensor . Isotropic elastic materials are the special cases for which the Cauchy stress tensor σ depends solely on the left Cauchy–Green strain tensor . In this Note we revisit the following property of isotropic hyperelastic materials: if the constitutive law relating Σ and C is derivable from a potential ϕ, then σ and are related by a constitutive law derived from the compound potential . We give a new and concise proof which is based on an explicit integral formula expressing the derivative of the exponential of a tensor.
Accepté le :
Publié le :
Mot clés : Déformation finie, Hyperélasticité isotrope, Variables duales, Déformation logarithmique, Tenseur des déformations de Hencky, Loi de comportement
Claude Vallée 1 ; Danielle Fortuné 1 ; Camelia Lerintiu 1
@article{CRMECA_2008__336_11-12_851_0, author = {Claude Vall\'ee and Danielle Fortun\'e and Camelia Lerintiu}, title = {On the dual variable of the {Cauchy} stress tensor in isotropic finite hyperelasticity}, journal = {Comptes Rendus. M\'ecanique}, pages = {851--855}, publisher = {Elsevier}, volume = {336}, number = {11-12}, year = {2008}, doi = {10.1016/j.crme.2008.10.003}, language = {en}, }
TY - JOUR AU - Claude Vallée AU - Danielle Fortuné AU - Camelia Lerintiu TI - On the dual variable of the Cauchy stress tensor in isotropic finite hyperelasticity JO - Comptes Rendus. Mécanique PY - 2008 SP - 851 EP - 855 VL - 336 IS - 11-12 PB - Elsevier DO - 10.1016/j.crme.2008.10.003 LA - en ID - CRMECA_2008__336_11-12_851_0 ER -
%0 Journal Article %A Claude Vallée %A Danielle Fortuné %A Camelia Lerintiu %T On the dual variable of the Cauchy stress tensor in isotropic finite hyperelasticity %J Comptes Rendus. Mécanique %D 2008 %P 851-855 %V 336 %N 11-12 %I Elsevier %R 10.1016/j.crme.2008.10.003 %G en %F CRMECA_2008__336_11-12_851_0
Claude Vallée; Danielle Fortuné; Camelia Lerintiu. On the dual variable of the Cauchy stress tensor in isotropic finite hyperelasticity. Comptes Rendus. Mécanique, Volume 336 (2008) no. 11-12, pp. 851-855. doi : 10.1016/j.crme.2008.10.003. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2008.10.003/
[1] Mathematical Elasticity, vol. 1, Three-Dimensional Elasticity, North-Holland, Amsterdam, 1988
[2] Calcul linéaire, P.U.F, Paris, 1959
[3] Lois de comportement élastique isotropes en grandes déformations, International Journal of Engineering Science, Volume 16 (1978) no. 7, pp. 451-457
[4] On the dual variable of the logarithmic strain tensor, the dual variable of the Cauchy stress tensor, and related issues, International Journal of Solids and Structures, Volume 38 (2001) no. 50–51, pp. 9221-9232
[5] The stress conjugate to logarithmic strain, International Journal of Solids and Structures, Volume 23 (1987) no. 12, pp. 1645-1656
[6] Constitutive inequalities for an isotropic elastic strain–energy function based on Hencky's logarithmic strain tensor, Proceedings of the Royal Society of London, Series A – Mathematical Physical and Engineering Sciences, Volume 457 (2001) no. 2013, pp. 2207-2226
[7] Fitting hyperelastic models to experimental data, Computational Mechanics, Volume 34 (2004) no. 6, pp. 484-502
[8] A model for finite strain elastoplasticity based on logarithmic strains – computational issues, Computer Methods in Applied Mechanics and Engineering, Volume 94 (1992) no. 1, pp. 35-61
[9] On strong ellipticity for isotropic hyperelastic materials based upon logarithmic strain, International Journal of Non-Linear Mechanics, Volume 40 (2005) no. 2–3, pp. 195-212
[10] Hencky's elasticity model and linear stress–strain relations in isotropic finite hyperelasticity, Acta Mechanica, Volume 157 (2002) no. 1–4, pp. 51-60
[11] The 3é hyperelastic model applied to the modeling of 3D impact problems, Finite Elements in Analysis and Design, Volume 43 (2006) no. 1, pp. 51-58
[12] On the form of the inverted stress–strain law for isotropic hyperelastic solids, International Journal of Non-Linear Mechanics, Volume 27 (1992) no. 3, pp. 413-421
[13] Hencky's logarithmic strain and dual stress–strain and strain–stress relations in isotropic finite hyperelasticity, International Journal of Solids and Structures, Volume 40 (2003) no. 6, pp. 1455-1463
[14] Explicit dual stress–strain and strain–stress relations of incompressible isotropic hyperelastic solids via deviatoric Hencky strain and Cauchy stress, Acta Mechanica, Volume 168 (2004) no. 1–2, pp. 21-33
[15] The theory of finite strains of a granular material, Journal of Applied Mathematics and Mechanics, Volume 71 (2007) no. 1, pp. 93-110
Cité par Sources :
Commentaires - Politique