Comptes Rendus
Modélisation de tissus biologiques en hyperélasticité anisotrope – Étude théorique et approche éléments finis
Comptes Rendus. Mécanique, Volume 337 (2009) no. 2, pp. 101-106.

Pour déterminer les déformations et les contraintes au sein de tissus biologiques tels que les ligaments, les tendons ou les parois artérielles, les lois de comportements hyperélastiques anisotropes sont souvent utilisées dans le cadre de la méthode des éléments finis [J.A. Weiss, B.N. Maker, S. Govindjee, Finite element implementation of incompressible, transversely isotropic hyperelasticity, Comp. Meth. Appl. Mech. Engng. 135 (1996) 107–128]. Dans cet article, on se propose de réaliser une telle étude en parallèle avec une analyse analytique. Cette analyse complémentaire permet de comprendre pourquoi la correspondance n'est pas biunivoque entre la déformation principale λ2 et le quatrième invariant de la matrice de dilatation pour un modèle usuel tel que celui proposé par Holzapfel, Gasser et Ogden [G.A. Holzapfel, T.C. Gasser, R.W. Ogden, A new constitutive framework for arterial wall mechanics and a comparative study of material models, J. Elasticity 61 (2000) 1–48; T.C. Gasser, R.W. Ogden, G.A. Holzapfel, Hyperelastic modelling of arterial layers with distributed collagen fibre orientations, J. R. Soc. Interface 3 (2006) 15–35]. On établit en effet qu'une correspondance non bijective apparaît lorsque l'angle entre les fibres de collagène et la direction circonférentielle dépasse une valeur critique égale à 54,73°. L'importance de cet angle critique a déjà été relevée par Guo et al. (2006).

To determine the strain and stress in the biological soft tissues such as ligaments, tendons or arterial walls, anisotropic hyperelastic constitutive laws are often used in the context of finite element analysis [J.A. Weiss, B.N. Maker, S. Govindjee, Finite element implementation of incompressible, transversely isotropic hyperelasticity, Comp. Meth. Appl. Mech. Engng. 135 (1996) 107–128]. In the present paper, we propose to realize such a study together with a analytical study. This study allows for the understanding of the reason why it does not exist a one-to-one correspondence between the principal stretch λ2 and the fourth invariant of the dilatation tensor for the material model proposed by Holzapfel, Gasser and Ogden [G.A. Holzapfel, T.C. Gasser, R.W. Ogden, A new constitutive framework for arterial wall mechanics and a comparative study of material models, J. Elasticity 61 (2000) 1–48; T.C. Gasser, R.W. Ogden, G.A. Holzapfel, Hyperelastic modelling of arterial layers with distributed collagen fibre orientations, J. R. Soc. Interface 3 (2006) 15–35]. In fact, the relationship becomes non-bijective when the angle between the collagen fibers and the circumferential direction is greater that a critical angle of 54.73°. Importance of this critical angle was also discussed by Guo et al. (2006).

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2009.03.007
Mots-clés : Biomécanique, Hyperélasticité anisotrope, Modèle HGO, Éléments finis
Keywords: Biomechanics, Anisotropic hyperelasticity, HGO model, Finite element

François Peyraut 1 ; Christine Renaud 2 ; Nadia Labed 1 ; Zhi-Qiang Feng 2

1 Laboratoire M3M, Université de technologie de Belfort-Montbéliard, 90010 Belfort, France
2 Laboratoire LME-Evry, Université d'Évry – Val d'Essonne, 91020 Évry, France
@article{CRMECA_2009__337_2_101_0,
     author = {Fran\c{c}ois Peyraut and Christine Renaud and Nadia Labed and Zhi-Qiang Feng},
     title = {Mod\'elisation de tissus biologiques en hyper\'elasticit\'e anisotrope {\textendash} {\'Etude} th\'eorique et approche \'el\'ements finis},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {101--106},
     publisher = {Elsevier},
     volume = {337},
     number = {2},
     year = {2009},
     doi = {10.1016/j.crme.2009.03.007},
     language = {fr},
}
TY  - JOUR
AU  - François Peyraut
AU  - Christine Renaud
AU  - Nadia Labed
AU  - Zhi-Qiang Feng
TI  - Modélisation de tissus biologiques en hyperélasticité anisotrope – Étude théorique et approche éléments finis
JO  - Comptes Rendus. Mécanique
PY  - 2009
SP  - 101
EP  - 106
VL  - 337
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crme.2009.03.007
LA  - fr
ID  - CRMECA_2009__337_2_101_0
ER  - 
%0 Journal Article
%A François Peyraut
%A Christine Renaud
%A Nadia Labed
%A Zhi-Qiang Feng
%T Modélisation de tissus biologiques en hyperélasticité anisotrope – Étude théorique et approche éléments finis
%J Comptes Rendus. Mécanique
%D 2009
%P 101-106
%V 337
%N 2
%I Elsevier
%R 10.1016/j.crme.2009.03.007
%G fr
%F CRMECA_2009__337_2_101_0
François Peyraut; Christine Renaud; Nadia Labed; Zhi-Qiang Feng. Modélisation de tissus biologiques en hyperélasticité anisotrope – Étude théorique et approche éléments finis. Comptes Rendus. Mécanique, Volume 337 (2009) no. 2, pp. 101-106. doi : 10.1016/j.crme.2009.03.007. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2009.03.007/

[1] T.C. Gasser; R.W. Ogden; G.A. Holzapfel Hyperelastic modelling of arterial layers with distributed collagen fibre orientations, J. R. Soc. Interface, Volume 3 (2006), pp. 15-35

[2] G.A. Holzapfel; T.C. Gasser; R.W. Ogden A new constitutive framework for arterial wall mechanics and a comparative study of material models, J. Elasticity, Volume 61 (2000), pp. 1-48

[3] J. Schröder; P. Neff; D. Balzani A variational approach for materially stable anisotropic hyperelasticity, Int. J. Solids Struct., Volume 42 (2005), pp. 4352-4371

[4] Y.C. Fung; K. Fronek; P. Patitucci Pseudoelasticity of arteries and the choice of its mathematical expression, Am. J. Physiol., Volume 237 (1979), p. H620-H631

[5] J.A. Weiss; B.N. Maker; S. Govindjee Finite element implementation of incompressible, transversely isotropic hyperelasticity, Comp. Meth. Appl. Mech. Engng., Volume 135 (1996), pp. 107-128

[6] A.J.M. Spencer Isotropic polynomial invariants and tensor functions (J.P. Boehler, ed.), Applications of Tensor Functions in Solids Mechanics, CISM Course, No. 282, Springer Verlag, 1987

[7] D. Balzani; P. Neff; J. Schröder; G.A. Holzapfel A polyconvex framework for soft biological tissues. Adjustment to experimental data, Int. J. Solids Struct., Volume 43 (2006), pp. 6052-6070

[8] Z.-Q. Feng http://lmee.univ-evry.fr/~feng/FerSystem.html

  • Wael Alliliche; Christine Renaud; Jean-Michel Cros; Zhi-Qiang Feng An Anisotropic Hyperelastic Model for Human Skin: Finite Element Modeling, Identification of Parameters, Mechanical Tests, Computer Methods, Imaging and Visualization in Biomechanics and Biomedical Engineering II, Volume 38 (2023), p. 271 | DOI:10.1007/978-3-031-10015-4_23
  • Wael Alliliche; Christine Renaud; Jean-Michel Cros; Zhi-Qiang Feng Numerical simulation of mechanical tests on a living skin using anisotropic hyperelastic law, Journal of the Mechanical Behavior of Biomedical Materials, Volume 141 (2023), p. 105755 | DOI:10.1016/j.jmbbm.2023.105755
  • Renye Cai; Libang Hu; Frédéric Holweck; François Peyraut; Zhi-Qiang Feng Convexity, polyconvexity and finite element implementation of a four-fiber anisotropic hyperelastic strain energy density – application to the modeling of femoral, popliteal and tibial arteries, Computer Methods in Applied Mechanics and Engineering, Volume 399 (2022), p. 16 (Id/No 115294) | DOI:10.1016/j.cma.2022.115294 | Zbl:1507.74071
  • David C. Kellermann; Mario M. Attard; Daniel J. O’Shea Fourth-order tensor algebraic operations and matrix representation in continuum mechanics, Archive of Applied Mechanics, Volume 91 (2021) no. 12, p. 4631 | DOI:10.1007/s00419-021-01926-0
  • Naghmeh M. Bandari; Roozbeh Ahmadi; Amir Hooshiar; Javad Dargahi; Muthukumaran Packirisamy Hybrid piezoresistive-optical tactile sensor for simultaneous measurement of tissue stiffness and detection of tissue discontinuity in robot-assisted minimally invasive surgery, Journal of Biomedical Optics, Volume 22 (2017) no. 7, p. 077002 | DOI:10.1117/1.jbo.22.7.077002
  • Ghislain Maquer; Jakob Schwiedrzik; Philippe K. Zysset Embedding of human vertebral bodies leads to higher ultimate load and altered damage localisation under axial compression, Computer Methods in Biomechanics and Biomedical Engineering, Volume 17 (2014) no. 12, p. 1311 | DOI:10.1080/10255842.2012.744400
  • Ghislain Maquer; Marc Laurent; Vaclav Brandejsky; Michael L. Pretterklieber; Philippe K. Zysset Finite Element Based Nonlinear Normalization of Human Lumbar Intervertebral Disc Stiffness to Account for Its Morphology, Journal of Biomechanical Engineering, Volume 136 (2014) no. 6 | DOI:10.1115/1.4027300
  • Vincas Benevicius; Rimvydas Gaidys; Vytautas Ostasevicius; Vaidotas Marozas Identification of rheological properties of human body surface tissue, Journal of Biomechanics, Volume 47 (2014) no. 6, p. 1368 | DOI:10.1016/j.jbiomech.2014.01.050
  • J. Noailly; D. Lacroix Finite element modelling of the spine, Biomaterials for Spinal Surgery (2012), p. 144 | DOI:10.1533/9780857096197.1.144
  • MAMADOU TOUNGARA; GREGORY CHAGNON; CHRISTIAN GEINDREAU NUMERICAL ANALYSIS OF THE WALL STRESS IN ABDOMINAL AORTIC ANEURYSM: INFLUENCE OF THE MATERIAL MODEL NEAR-INCOMPRESSIBILITY, Journal of Mechanics in Medicine and Biology, Volume 12 (2012) no. 01, p. 1250005 | DOI:10.1142/s0219519412004442
  • Jarraya Abdessalem; Imen Kammoun Kallel; Dammak Fakhreddine Theory and finite element implementation of orthotropic and transversely isotropic incompressible hyperelastic membrane, Multidiscipline Modeling in Materials and Structures, Volume 7 (2011) no. 4, p. 424 | DOI:10.1108/15736101111185298
  • François Peyraut; Dominique Chamoret; Samuel Gomes; Zhi-Qiang Feng Implémentation éléments finis du modèle hyperélastique anisotrope HGO, European Journal of Computational Mechanics, Volume 19 (2010) no. 4, p. 441 | DOI:10.3166/ejcm.19.441-464

Cité par 12 documents. Sources : Crossref, zbMATH

Commentaires - Politique