Pour déterminer les déformations et les contraintes au sein de tissus biologiques tels que les ligaments, les tendons ou les parois artérielles, les lois de comportements hyperélastiques anisotropes sont souvent utilisées dans le cadre de la méthode des éléments finis [J.A. Weiss, B.N. Maker, S. Govindjee, Finite element implementation of incompressible, transversely isotropic hyperelasticity, Comp. Meth. Appl. Mech. Engng. 135 (1996) 107–128]. Dans cet article, on se propose de réaliser une telle étude en parallèle avec une analyse analytique. Cette analyse complémentaire permet de comprendre pourquoi la correspondance n'est pas biunivoque entre la déformation principale
To determine the strain and stress in the biological soft tissues such as ligaments, tendons or arterial walls, anisotropic hyperelastic constitutive laws are often used in the context of finite element analysis [J.A. Weiss, B.N. Maker, S. Govindjee, Finite element implementation of incompressible, transversely isotropic hyperelasticity, Comp. Meth. Appl. Mech. Engng. 135 (1996) 107–128]. In the present paper, we propose to realize such a study together with a analytical study. This study allows for the understanding of the reason why it does not exist a one-to-one correspondence between the principal stretch
Accepté le :
Publié le :
Keywords: Biomechanics, Anisotropic hyperelasticity, HGO model, Finite element
François Peyraut 1 ; Christine Renaud 2 ; Nadia Labed 1 ; Zhi-Qiang Feng 2
@article{CRMECA_2009__337_2_101_0, author = {Fran\c{c}ois Peyraut and Christine Renaud and Nadia Labed and Zhi-Qiang Feng}, title = {Mod\'elisation de tissus biologiques en hyper\'elasticit\'e anisotrope {\textendash} {\'Etude} th\'eorique et approche \'el\'ements finis}, journal = {Comptes Rendus. M\'ecanique}, pages = {101--106}, publisher = {Elsevier}, volume = {337}, number = {2}, year = {2009}, doi = {10.1016/j.crme.2009.03.007}, language = {fr}, }
TY - JOUR AU - François Peyraut AU - Christine Renaud AU - Nadia Labed AU - Zhi-Qiang Feng TI - Modélisation de tissus biologiques en hyperélasticité anisotrope – Étude théorique et approche éléments finis JO - Comptes Rendus. Mécanique PY - 2009 SP - 101 EP - 106 VL - 337 IS - 2 PB - Elsevier DO - 10.1016/j.crme.2009.03.007 LA - fr ID - CRMECA_2009__337_2_101_0 ER -
%0 Journal Article %A François Peyraut %A Christine Renaud %A Nadia Labed %A Zhi-Qiang Feng %T Modélisation de tissus biologiques en hyperélasticité anisotrope – Étude théorique et approche éléments finis %J Comptes Rendus. Mécanique %D 2009 %P 101-106 %V 337 %N 2 %I Elsevier %R 10.1016/j.crme.2009.03.007 %G fr %F CRMECA_2009__337_2_101_0
François Peyraut; Christine Renaud; Nadia Labed; Zhi-Qiang Feng. Modélisation de tissus biologiques en hyperélasticité anisotrope – Étude théorique et approche éléments finis. Comptes Rendus. Mécanique, Volume 337 (2009) no. 2, pp. 101-106. doi : 10.1016/j.crme.2009.03.007. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2009.03.007/
[1] Hyperelastic modelling of arterial layers with distributed collagen fibre orientations, J. R. Soc. Interface, Volume 3 (2006), pp. 15-35
[2] A new constitutive framework for arterial wall mechanics and a comparative study of material models, J. Elasticity, Volume 61 (2000), pp. 1-48
[3] A variational approach for materially stable anisotropic hyperelasticity, Int. J. Solids Struct., Volume 42 (2005), pp. 4352-4371
[4] Pseudoelasticity of arteries and the choice of its mathematical expression, Am. J. Physiol., Volume 237 (1979), p. H620-H631
[5] Finite element implementation of incompressible, transversely isotropic hyperelasticity, Comp. Meth. Appl. Mech. Engng., Volume 135 (1996), pp. 107-128
[6] Isotropic polynomial invariants and tensor functions (J.P. Boehler, ed.), Applications of Tensor Functions in Solids Mechanics, CISM Course, No. 282, Springer Verlag, 1987
[7] A polyconvex framework for soft biological tissues. Adjustment to experimental data, Int. J. Solids Struct., Volume 43 (2006), pp. 6052-6070
- An Anisotropic Hyperelastic Model for Human Skin: Finite Element Modeling, Identification of Parameters, Mechanical Tests, Computer Methods, Imaging and Visualization in Biomechanics and Biomedical Engineering II, Volume 38 (2023), p. 271 | DOI:10.1007/978-3-031-10015-4_23
- Numerical simulation of mechanical tests on a living skin using anisotropic hyperelastic law, Journal of the Mechanical Behavior of Biomedical Materials, Volume 141 (2023), p. 105755 | DOI:10.1016/j.jmbbm.2023.105755
- Convexity, polyconvexity and finite element implementation of a four-fiber anisotropic hyperelastic strain energy density – application to the modeling of femoral, popliteal and tibial arteries, Computer Methods in Applied Mechanics and Engineering, Volume 399 (2022), p. 16 (Id/No 115294) | DOI:10.1016/j.cma.2022.115294 | Zbl:1507.74071
- Fourth-order tensor algebraic operations and matrix representation in continuum mechanics, Archive of Applied Mechanics, Volume 91 (2021) no. 12, p. 4631 | DOI:10.1007/s00419-021-01926-0
- Hybrid piezoresistive-optical tactile sensor for simultaneous measurement of tissue stiffness and detection of tissue discontinuity in robot-assisted minimally invasive surgery, Journal of Biomedical Optics, Volume 22 (2017) no. 7, p. 077002 | DOI:10.1117/1.jbo.22.7.077002
- Embedding of human vertebral bodies leads to higher ultimate load and altered damage localisation under axial compression, Computer Methods in Biomechanics and Biomedical Engineering, Volume 17 (2014) no. 12, p. 1311 | DOI:10.1080/10255842.2012.744400
- Finite Element Based Nonlinear Normalization of Human Lumbar Intervertebral Disc Stiffness to Account for Its Morphology, Journal of Biomechanical Engineering, Volume 136 (2014) no. 6 | DOI:10.1115/1.4027300
- Identification of rheological properties of human body surface tissue, Journal of Biomechanics, Volume 47 (2014) no. 6, p. 1368 | DOI:10.1016/j.jbiomech.2014.01.050
- Finite element modelling of the spine, Biomaterials for Spinal Surgery (2012), p. 144 | DOI:10.1533/9780857096197.1.144
- NUMERICAL ANALYSIS OF THE WALL STRESS IN ABDOMINAL AORTIC ANEURYSM: INFLUENCE OF THE MATERIAL MODEL NEAR-INCOMPRESSIBILITY, Journal of Mechanics in Medicine and Biology, Volume 12 (2012) no. 01, p. 1250005 | DOI:10.1142/s0219519412004442
- Theory and finite element implementation of orthotropic and transversely isotropic incompressible hyperelastic membrane, Multidiscipline Modeling in Materials and Structures, Volume 7 (2011) no. 4, p. 424 | DOI:10.1108/15736101111185298
- Implémentation éléments finis du modèle hyperélastique anisotrope HGO, European Journal of Computational Mechanics, Volume 19 (2010) no. 4, p. 441 | DOI:10.3166/ejcm.19.441-464
Cité par 12 documents. Sources : Crossref, zbMATH
Commentaires - Politique