The high order homogenization technique generates the so called infinite order homogenized equation. Its coefficients were widely discussed in composite mechanics literature because they are closely related to the so called high order strain gradients theories. However, it was not clear what is the correct mathematical setting for this equation and what are the asymptotically exact boundary conditions. In the present Note we give a variational formulation for the high order homogenized equation by the projection of the initial problem on the “ansatz subspace”. This formulation generates the appropriate boundary conditions for the high order homogenized equation. The error estimates for the solution of the original problem and the homogenized one are obtained.
La technique d'homogénéisation d'ordre élévé mène à l'équation homogénéisée d'ordre élévé. Ses coefficients ont été largement discutés dans la literature de la mécanique des composites parce qu'ils sont liés aux théories des gradients des déformations d'ordre élévé. Neanmoins, la nature mathématique de cette équation n'a pas été complètement clarifiée et les conditions aux limites asymptotiquement exactes n'ont pas été définies. Dans cette Note nous donnons la formulation variationnelle de l'équation homogénéisée d'ordre élévé. Cette formulation est dérivée par la projection du problème initial sur l'espace du dévéloppement asymptotique. Elle engendre les conditions aux limites appropriées pour l'équation homogénéisée d'ordre élévé. L'estimation de la difference entre la solution exacte et la solution approchée est obtenue.
Accepted:
Published online:
Mots-clés : Homogénéisation, Equation homogénéisée d'ordre élévé, Conditions aux limites d'ordre élévé, Théories des gradients des déformations
Grigory Panasenko 1
@article{CRMECA_2009__337_1_8_0, author = {Grigory Panasenko}, title = {Boundary conditions for the high order homogenized equation: laminated rods, plates and composites}, journal = {Comptes Rendus. M\'ecanique}, pages = {8--14}, publisher = {Elsevier}, volume = {337}, number = {1}, year = {2009}, doi = {10.1016/j.crme.2008.10.008}, language = {en}, }
Grigory Panasenko. Boundary conditions for the high order homogenized equation: laminated rods, plates and composites. Comptes Rendus. Mécanique, Volume 337 (2009) no. 1, pp. 8-14. doi : 10.1016/j.crme.2008.10.008. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2008.10.008/
[1] Théorie des Corps Déformables, Hermanns, Paris, 1909
[2] Microstructure in linear elasticity, Arch. Ration. Mech. Anal., Volume 16 (1965), pp. 51-78
[3] Elastic materials with couple stresses, Arch. Ration. Mech. Anal., Volume 11 (1962), pp. 385-414
[4] Two-term asymptotics of the problem on longitudinal deformation of a plate with clamped edge, Computational Mechanics of Solids, Volume 2 (1991), pp. 10-21 (in Russian)
[5] On the accuracy of asymptotic approximations for longitudinal deformation of a thin plate, Math. Modelling Numer. Anal., Volume 30 (1996) no. 2, pp. 185-213
[6] Averaging partial differential equations with rapidly oscillating coefficients, Dokl. Acad. Nauk SSSR, Volume 221 (1975), pp. 516-519
[7] Homogenization: Averaging Processes in Periodic Media, Mathematics and Its Applications (Soviet Series), vol. 36, Nauka, Moscow, 1984 (in Russian). English translation in:, 1989, Kluwer Academic Publishers, Dordrecht
[8] Boundary layer in homogenization problems for non-homogeneous media, BAIL 4 (S.K. Godunov; J.J.H. Miller; V.A. Novikov, eds.), Boole Press, Dublin (1986), pp. 398-402
[9] Multi-Scale Modelling for Structures and Composites, Springer, 2005
[10] Variational properties of averaged equations for periodic media I, Trudy Mat. Inst. Steklova, Volume 192 (1990), pp. 3-18 (English version: Proc. Steklov Inst. Math., 192, 1992)
[11] Investigation of the effective equations with dispersion for wave propagation in stratified media and thin plates, Dokl. RAN, Volume 383 (2002) no. 6
[12] Investigation of the effective equations with dispersion for wave propagation in heterogeneous thin rods, Dokl. RAN, Volume 387 (2002) no. 6, pp. 749-753
[13] M.B. Panfilov, Macroscopic models of flows in stronglyheterogeneous porous media, Doctor Sci. Thesis, 1992
[14] On derivation of “strain gradient” effects in the overall behaviour of periodic heterogeneous media, J. Mech. Phys. Solids, Volume 48 (2000), pp. 1325-1357
[15] Microstructural effects in elastic composites, Int. J. Solids Structures, Volume 33 (1996), pp. 1023-1051
[16] On the existence and uniqueness of the solution of some elliptic equations, set in (V.A. Morozov, ed.), Proc. of the Conference of young researchers of the Dept. of Numerical Analysis and Informatics of Moscow State University, Moscow University Publ., Moscow, 1976, pp. 53-61 (in Russian)
[17] Asymptotic of higher order of solutions of equations with rapidly oscillating coefficients, Dokl. Akad. Nauk SSSR, Volume 240 (1978) no. 6, pp. 1293-1296 (in Russian). English translation in Soviet Math. Dokl., 1979
[18] High order asymptotics of solutions of problems on the contact of periodic structures, Math. Sb., Volume 110 (152) (1979) no. 4, pp. 505-538 (in Russian). English translation in Math. USSR Sb., 38, 4, 1981, pp. 465-494
[19] Nonhomogeneous Media and Vibration Theory, Lecture Notes in Physics, vol. 127, Springer-Verlag, New York, 1980
[20] Some Methods in Mathematical Analysis of Systems and their Control, Science Press, Gordon and Breach, Beijing, New York, 1981
[21] The partial homogenization: continuous and semi-discretized versions, Math. Models Methods Appl. Sci., Volume 8 (2007) no. 17, pp. 1183-1209
[22] A theorem on the asymptotics of solutions of elliptic equations with coefficients periodic in all variables except one, Dokl. Akad. Nauk SSSR, Volume 235 (1977) no. 6, pp. 1140-1143 (in Russian). English translation in Soviet Math. Dokl., 18, 4, 1977
Cited by Sources:
Comments - Policy