We consider variational inequalities for the Laplace operator in a domain Ω of periodically perforated along a manifold, with nonlinear restrictions for the flux on the boundary of the cavities. We assume that the perforations are balls of radius distributed along a -dimensional manifold γ with period ε. Here is a small parameter, and . On the boundary of the perforations, we have the restrictions for the solution , and , where and σ is a certain smooth function. For and , we characterize the asymptotic behavior of as providing the homogenized problems. A critical size of the cavities is found when for which the corrector in the energy norm is constructed.
Nous considèrons inégalités variationnelles pour lʼopérateur de Laplace dans une domaine Ω de périodiquement perforé, et avec des restrictions pour le flux sur la frontière des trous. On suppose que les perforations sont des boules de rayon distribuées sur une variété de dimension , γ, de période ε. Ici est une petite paramètre, et . Sur la frontière des trous nous avons des restrictions pour la solution , et , où et σ est une certaine fonction régulière. Pour and , nous caractérisons le comportement asymptotique de pour . On trouve les problèmes homogéneisés et une taille critique des trous pour . Pour cette taille on construit le correcteur dans la norme de lʼénergie.
Accepted:
Published online:
Mots-clés : Milieux poreux, Inégalités variationnelles, Flux non linéaire, Homogénéisation des frontières
Delfina Gómez 1; Miguel Lobo 1; M. Eugenia Pérez 2; Tatiana A. Shaposhnikova 3
@article{CRMECA_2011__339_6_406_0, author = {Delfina G\'omez and Miguel Lobo and M. Eugenia P\'erez and Tatiana A. Shaposhnikova}, title = {Averaging in variational inequalities with nonlinear restrictions along manifolds}, journal = {Comptes Rendus. M\'ecanique}, pages = {406--410}, publisher = {Elsevier}, volume = {339}, number = {6}, year = {2011}, doi = {10.1016/j.crme.2011.04.002}, language = {en}, }
TY - JOUR AU - Delfina Gómez AU - Miguel Lobo AU - M. Eugenia Pérez AU - Tatiana A. Shaposhnikova TI - Averaging in variational inequalities with nonlinear restrictions along manifolds JO - Comptes Rendus. Mécanique PY - 2011 SP - 406 EP - 410 VL - 339 IS - 6 PB - Elsevier DO - 10.1016/j.crme.2011.04.002 LA - en ID - CRMECA_2011__339_6_406_0 ER -
%0 Journal Article %A Delfina Gómez %A Miguel Lobo %A M. Eugenia Pérez %A Tatiana A. Shaposhnikova %T Averaging in variational inequalities with nonlinear restrictions along manifolds %J Comptes Rendus. Mécanique %D 2011 %P 406-410 %V 339 %N 6 %I Elsevier %R 10.1016/j.crme.2011.04.002 %G en %F CRMECA_2011__339_6_406_0
Delfina Gómez; Miguel Lobo; M. Eugenia Pérez; Tatiana A. Shaposhnikova. Averaging in variational inequalities with nonlinear restrictions along manifolds. Comptes Rendus. Mécanique, Volume 339 (2011) no. 6, pp. 406-410. doi : 10.1016/j.crme.2011.04.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2011.04.002/
[1] The asymptotic behaviour of the third boundary-value problem solutions in domains with fine-grained boundaries, Homogenization and Applications to Material Sciences, GAKUTO Internat. Ser. Math. Sci. Appl., vol. 9, Gakkotosho, Tokyo, 1995, pp. 203-213
[2] Homogenization in chemical reactive flows, Electronic J. Differential Equations, Volume 2004 (2004) no. 40, pp. 1-22
[3] Averaging of boundary-value problem in domain perforated along -dimensional manifold with nonlinear third type boundary conditions on the boundary of cavities, Dokl. Math., Volume 83 (2011), pp. 34-38
[4] On homogenization of boundary-value problem in perforated domain with third-type boundary condition and an changing of the character of nonlinearity under homogenization, Diff. Eq., Volume 47 (2011) no. 1, pp. 78-90
[5] Asymptotic behavior of elliptic problems in perforated domain with nonlinear boundary condition, Asymptot. Anal., Volume 53 (2007), pp. 209-235
[6] Homogenization limit for the diffusion equation with nonlinear flux condition on the boundary of very thin holes periodically distributed in a domain, in case of a critical size, Dokl. Math., Volume 82 (2010), pp. 736-740
[7] On homogenization problem for the Laplace operator in partially perforated domains with Neumannʼs condition on the boundary of cavities, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Mat. Appl., Volume 6 (1995), pp. 133-142
[8] On homogenization of solutions of boundary value problem in domains, perforated along manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. Ser., Volume 4 (1997) no. 25, pp. 611-629
[9] On homogenization of the Poisson equation in partially perforated domains with arbitrary density of cavities and mixed type conditions on their boundary, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Mat. Appl. Ser., Volume 9 (1996) no. 7, pp. 129-146
[10] Some homogenization problems for the system of elasticity with nonlinear boundary conditions in perforated domains, Appl. Anal., Volume 71 (1999), pp. 379-411
[11] Homogenization of variational inequalities and of equations defined by a pseudo-monotone operator, Sb. Math., Volume 199 (2008), pp. 67-98
[12] D. Gómez, M. Lobo, M.E. Pérez, T.A. Shaposhnikova, Averaging of variational inequalities for the laplacian in a domain with small cavities distributed along a manifold and nonlinear restriction for the flux on the boundary of cavities, in preparation.
[13] Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod, Paris, 1969
Cited by Sources:
☆ The work has been partially supported by the Spanish MICINN: MTM2009-12628.
Comments - Policy