Comptes Rendus
Surface mechanics: facts and numerical models
Extending the contact regimes to single-crystal indentations
Comptes Rendus. Mécanique, Volume 339 (2011) no. 7-8, pp. 458-465.

This article provides a fresh look into the concept of the contact regimes in mechanistic analyses of indentation experiments performed in single crystals. In this context, spherical microindentation experiments in fcc metals are examined through detailed continuum crystal plasticity finite element simulations in order to provide meaning to the onset of fully-plastic and elasto-plastic contact regimes, which are well-known to rule the behavior of polycrystals exhibiting isotropic uniaxial stress–strain curves. Attention is then given to evaluate the applicability of Taborʼs hardness relation in ruling fully-plastic single-crystal spherical indentations as well as the extraction of the uniaxial plastic flow properties from a series of microindentation tests performed at different penetrations. A discussion is finally provided on the applicability of self-similarity assumptions to the analysis of single-crystal fully-plastic indentations.

Publié le :
DOI : 10.1016/j.crme.2011.05.004
Mots clés : Indentation and hardness, Plasticity, Contact mechanics, Finite elements
Jorge Alcalá 1 ; Daniel Esqué-de los Ojos 1

1 GRICCA-EUETIB, Universitat Politècnica de Catalunya, Comte dʼUrgell 187, 08036 Barcelona, Spain
@article{CRMECA_2011__339_7-8_458_0,
     author = {Jorge Alcal\'a and Daniel Esqu\'e-de los Ojos},
     title = {Extending the contact regimes to single-crystal indentations},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {458--465},
     publisher = {Elsevier},
     volume = {339},
     number = {7-8},
     year = {2011},
     doi = {10.1016/j.crme.2011.05.004},
     language = {en},
}
TY  - JOUR
AU  - Jorge Alcalá
AU  - Daniel Esqué-de los Ojos
TI  - Extending the contact regimes to single-crystal indentations
JO  - Comptes Rendus. Mécanique
PY  - 2011
SP  - 458
EP  - 465
VL  - 339
IS  - 7-8
PB  - Elsevier
DO  - 10.1016/j.crme.2011.05.004
LA  - en
ID  - CRMECA_2011__339_7-8_458_0
ER  - 
%0 Journal Article
%A Jorge Alcalá
%A Daniel Esqué-de los Ojos
%T Extending the contact regimes to single-crystal indentations
%J Comptes Rendus. Mécanique
%D 2011
%P 458-465
%V 339
%N 7-8
%I Elsevier
%R 10.1016/j.crme.2011.05.004
%G en
%F CRMECA_2011__339_7-8_458_0
Jorge Alcalá; Daniel Esqué-de los Ojos. Extending the contact regimes to single-crystal indentations. Comptes Rendus. Mécanique, Volume 339 (2011) no. 7-8, pp. 458-465. doi : 10.1016/j.crme.2011.05.004. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2011.05.004/

[1] K.L. Johnson Contact Mechanics, Cambridge University Press, United Kingdom, 1985

[2] R. Hill; E.H. Lee; S.J. Tupper The theory of wedge indentation of ductile materials, Proc. R. Soc. London A, Volume 188 (1947), pp. 273-289

[3] A.J. Ishlinsky An axi-symmetrical problem in plasticity and the Brinell test, Appl. Math. Mech., Volume 8 (1944), pp. 201-224

[4] D. Tabor Hardness of Metals, Clarendon Press, Oxford, United Kingdom, 1951

[5] M. Mata; M. Anglada; J. Alcalá A hardness equation for sharp indentation of elastic-power-law strain-hardening materials, Philos. Mag. A, Volume 82 (2002), pp. 1831-1839

[6] M. Mata; O. Casals; J. Alcalá The plastic zone size in indentation experiments: The analogy with the expansion of a spherical cavity, Int. J. Solids Struct., Volume 43 (2006), pp. 5994-6013

[7] X.L. Gao; X.N. Jing; G. Subhash Two new expanding cavity models for indentation deformations of elastic strain-hardening materials, Int. J. Solids Struct., Volume 43 (2006), pp. 2193-2208

[8] D. Durban; R. Masri Conical indentation of strain hardening solids, Eur. J. Mech. A – Solids, Volume 27 (2008), pp. 210-221

[9] P. Jiang; T. Zhang; Y. Feng; R. Yang; N. Liang Determination of plastic properties by instrumented spherical indentation: Expanding cavity model and similarity solution approach, J. Mater. Res., Volume 24 (2009), pp. 1045-1053

[10] R. Hill; B. Störakers; A.B. Zdunek A theoretical study of the Brinell hardness test, Proc. R. Soc. London A, Volume 423 (1989), pp. 301-330

[11] X. Hernot; O. Bartier; Y. Bekouche; Y.R. El Abdi; G. Mauvoisin Influence of penetration depth and mechanical properties on contact radius determination for spherical indentation, Int. J. Solids Struct., Volume 43 (2006), pp. 4136-4153

[12] K.D. Bouzakis; N. Michailidis An accurate and fast approach for determining materials stress–strain curves by nanoindentation and its FEM-based simulation, Mater. Charact., Volume 56 (2006), pp. 147-157

[13] H.Z. Lan; T.A. Venkatesh On the sensitivity characteristics in the determination of the elastic and plastic properties of materials through multiple indentation, J. Mater. Res., Volume 22 (2007), pp. 1043-1063

[14] S. Ghosh; T.K. Pal; S. Mukherjee; G. Das; S. Ghosh Comparative study of heat-affected zone with weld and base material after post-weld heat treatment of HSLA steel using ball indentation technique, J. Mater. Sci., Volume 43 (2008), pp. 5474-5482

[15] T.H. Zhang; P. Jiang; Y.H. Feng Numerical verification for instrumented spherical indentation techniques in determining the plastic properties of materials, J. Mater. Res., Volume 24 (2009), pp. 3653-3663

[16] M. Beghini; L. Bertini; V. Fontanari; B.D. Monelli Numerical analysis of plastic deformation evolution into metallic materials during spherical indentation process, J. Mater. Res., Volume 24 (2009), pp. 1270-1278

[17] A. Yonezu; Y. Kuwahara; K. Yoneda; H. Hirakata; K. Minoshima Estimation of the anisotropic plastic property using single spherical indentation – An FEM study, Comput. Mater. Sci., Volume 47 (2009), pp. 611-619

[18] S.K. Kang; J.Y. Kim; I. Kang; D. Kwon Effective indenter radius and frame compliance in instrumented indentation testing using a spherical indenter, J. Mater. Res., Volume 24 (2009), pp. 2965-2973

[19] J.H. Lee; T. Kim; H. Lee A study on robust indentation techniques to evaluate elastic–plastic properties of metals, Int. J. Solids Struct., Volume 47 (2010), pp. 647-664

[20] Y. Wang; D. Raabe; C. Kluber; F. Roters Orientation dependence of nanoindentation pile-up patterns and of nanoindentation microtextures in copper single crystals, Acta Mater., Volume 52 (2004), pp. 2229-2238

[21] C. Zambaldi; F. Roters; D. Raabe; U. Glatzelb Modeling and experiments on the indentation deformation and recrystallization of a single-crystal nickel-base superalloy, Mater. Sci. Eng. A, Volume 454–455 (2007), pp. 433-440

[22] O. Casals; J. Ocenasek; J. Alcalá Crystal plasticity finite element simulations of pyramidal indentation in copper single crystals, Acta Mater., Volume 55 (2007), pp. 55-68

[23] Y. Liu; S. Varghese; J. Ma; M. Yoshino; H. Lu; R. Komanduri Orientation effects in nanoindentation of single crystal copper, Int. J. Plasticity, Volume 24 (2008), pp. 1990-2015

[24] J. Alcalá; O. Casals; J. Ocenasek Micromechanics of pyramidal indentation in fcc metals: single crystal plasticity analysis, J. Mech. Phys. Solids, Volume 56 (2008), pp. 3277-3303

[25] J. Alcala; D. Esque-de los Ojos; S.A. Rodriguez The role of crystalline anisotropy in mechanical property extractions through Berkovich indentation, J. Mater. Res., Volume 24 (2009), pp. 1235-1244

[26] Z.L. Liu; X.M. Liu; Z. Zhuang; X.C. You A multi-scale computational model of crystal plasticity at submicron-to-nanometer scales, Int. J. Plasticity, Volume 25 (2009), pp. 1436-1455

[27] R.J. Asaro Micromechanics of crystals and polycrystals, Adv. Appl. Mech., Volume 23 (1983), pp. 1-115

[28] J. Alcalá; O. Casals; J. Ocenasek Corrigendum to “Micromechanics of pyramidal indentation in fcc metals: Single crystal plasticity finite element analysis” [J. Mech. Phys. Solids 56 (2008) 3277–3303], J. Mech. Phys. Solids, Volume 58 (2010), p. 751

[29] D. Peirce; R.J. Asaro; A. Needleman An analysis of nonuniform and localized deformation in ductile single-crystals, Acta Metall., Volume 30 (1982), pp. 1087-1119

[30] D. Peirce; R.J. Asaro; A. Needleman Material rate dependence and localized deformation in crystalline solids, Acta Metall., Volume 31 (1983), pp. 1951-1976

[31] J. Alcalá; D. Esque-de los Ojos Reassessing spherical indentation: contact regimes and mechanical property extractions, Int. J. Solids Struct., Volume 47 (2010), pp. 2714-2732

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

An approximate solution to the problem of cone or wedge indentation of elastoplastic solids

Guillaume Kermouche; Jean-Luc Loubet; Jean-Michel Bergheau

C. R. Méca (2005)


Contact response of ceramics

Eric Le Bourhis

C. R. Méca (2011)


Multiscale modelling of indentation in FCC metals: From atomic to continuum

Hyung-Jun Chang; Marc Fivel; David Rodney; ...

C. R. Phys (2010)