Comptes Rendus
Surface mechanics: facts and numerical models
Contact response of ceramics
Comptes Rendus. Mécanique, Volume 339 (2011) no. 7-8, pp. 466-472.

Instrumented indentation mechanics and its applications to ceramics characterisation are described and discussed. Instrumented nanoindentation has become an outstanding tool for characterising surfaces and is routinely used in industry and university. The article reviews important procedures and concepts that have proved to be very useful to analyse the contact response of ceramics (elastic–plastic loading, indentation strains and stresses, crack generation, composite response of coated pieces). Examples are used to illustrate the very wide range of studies that can be carried out.

Published online:
DOI: 10.1016/j.crme.2011.05.005
Keywords: Contact, Ceramics, Coating, Elasticity, Plasticity, Fracture

Eric Le Bourhis 1

1 Institut Pprime, département PMM, UPR 3346 CNRS, Université de Poitiers, ENSMA, SP2MI-Téléport 2, boulevard Marie et Pierre Curie, B.P. 30179, 86962 Futuroscope-Chasseneuil cedex, France
     author = {Eric Le Bourhis},
     title = {Contact response of ceramics},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {466--472},
     publisher = {Elsevier},
     volume = {339},
     number = {7-8},
     year = {2011},
     doi = {10.1016/j.crme.2011.05.005},
     language = {en},
AU  - Eric Le Bourhis
TI  - Contact response of ceramics
JO  - Comptes Rendus. Mécanique
PY  - 2011
SP  - 466
EP  - 472
VL  - 339
IS  - 7-8
PB  - Elsevier
DO  - 10.1016/j.crme.2011.05.005
LA  - en
ID  - CRMECA_2011__339_7-8_466_0
ER  - 
%0 Journal Article
%A Eric Le Bourhis
%T Contact response of ceramics
%J Comptes Rendus. Mécanique
%D 2011
%P 466-472
%V 339
%N 7-8
%I Elsevier
%R 10.1016/j.crme.2011.05.005
%G en
%F CRMECA_2011__339_7-8_466_0
Eric Le Bourhis. Contact response of ceramics. Comptes Rendus. Mécanique, Volume 339 (2011) no. 7-8, pp. 466-472. doi : 10.1016/j.crme.2011.05.005.

[1] E. Le Bourhis Glass Mechanics and Technology, Wiley–VCH, Germany, 2008

[2] J.L. Loubet; J.M. Georges; O. Marchesini; G. Meille Vickers indentation curves of magnesium oxide (MgO), J. Tribology, Volume 106 (1984), pp. 43-48

[3] W.C. Oliver; G.M. Pharr An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res., Volume 7 (1992), pp. 1564-1583

[4] D. Tabor Hardness of Metals, Oxford University Press, 1951

[5] K.L. Johnson Contact Mechanics, Cambridge University Press, 1985

[6] M.M. Chaudhri Subsurface strain distribution around Vickers hardness indentations in annealed polycrystalline copper, Acta Mater., Volume 46 (1998), pp. 3047-3056

[7] L. Largeau; G. Patriarche; E. Le Bourhis Subsurface deformations induced by a Vickers indenter in GaAs/AlGaAs superlattice, J. Mater. Sci. Lett., Volume 21 (2002), pp. 401-404

[8] D. Kramer; H. Huang; M. Kriese; J. Robach; J. Nelson; A. Wright; D. Bahr; W.W. Gerberich Yield strength predictions from the plastic zone around nanocontacts, Acta Mater., Volume 47 (1999), pp. 333-343

[9] M.M. Chaudhri, Dislocations in solids, Ed. F.R.N. Nabarro Collection 2004, Chapter 70.

[10] E. Le Bourhis; G. Patriarche Structure of nanoindentations in n and p heavily doped (001)GaAs, Acta Mater., Volume 56 (2008), pp. 1417-1426

[11] E. Le Bourhis; G. Patriarche Structure of annealed GaAs(001) nanoindentations, J. Appl. Phys., Volume 106 (2009), p. 123516

[12] E. Le Bourhis; G. Patriarche; L. Largeau; J.P. Rivière Polarity-induced changes in the nanoindentation response of GaAs, J. Mater. Res., Volume 19 (2004), pp. 131-136

[13] G. Dantelle; M. Mortier; D. Vivien; G. Patriarche Nucleation efficiency of erbium and ytterbium fluorides in transparent oxyfluoride glass-ceramics, J. Mater. Res., Volume 20 (2005), pp. 472-481

[14] A. Mikowski; F.C. Serbena; C.E. Foerster; C.M. Lepienski Statistical analysis of threshold load for radial crack nucleation by Vickers indentation in commercial soda-lime silica glass, J. Non-Crystal. Sol., Volume 352 (2006), pp. 3544-3549

[15] G.R. Anstis; P. Chantikul; B.R. Lawn; D.B. Marshall A critical evaluation of indentation techniques for measuring fracture toughness: I. Direct crack measurements, J. Am. Ceram. Soc., Volume 64 (1981), pp. 533-538

[16] G.M. Pharr Measurement of mechanical properties by ultra-low load indentation, Mater. Sci. Eng. A, Volume 253 (1998), pp. 151-159

[17] E. Vernaz; L. Larche; J. Zarzycki Fracture toughness-composition relationship in some binary and ternary glass systems, J. Non-Crystal. Sol., Volume 37 (1980), pp. 359-365

[18] N. Soga Elastic moduli and fracture toughness of glass, J. Non-Crystal. Sol., Volume 73 (1985), pp. 3059-3313

[19] G. Patriarche; E. Le Bourhis; D. Faurie; P.O. Renault TEM study of the indentation behaviour of thin Au film on GaAs, Thin Solid Films, Volume 460 (2004), pp. 150-155

[20] J. Mencik; D. Munz; E. Quandt; E.R. Weppelmann; M.V. Swain Determination of elastic modulus of thin layers using nanoindentation, J. Mater. Res., Volume 12 (1997), pp. 2475-2484

[21] A. Perriot; E. Barthel Elastic contact to a coated half-space: Effective elastic modulus and real penetration, J. Mater. Res., Volume 19 (2004), p. 600

[22] S. Bec; A. Tonck; J.L. Loubet A simple guide to determine elastic properties of films on substrate from nanoindentation experiments, Phil. Mag., Volume 86 (2006), p. 5347

[23] H. Li; J.J. Vlassak Determining the elastic modulus and hardness of an ultra-thin film on a substrate using nanoindentation, J. Mater. Res., Volume 24 (2009), p. 1114

[24] A. Tricoteaux; G. Duarte; D. Chicot; E. Le Bourhis; E. Bemporad; J. Lesage Depth-sensing indentation modeling for determination of elastic modulus of thin films, Mech. of Mater., Volume 42 (2010), p. 166

[25] D. Beegan; M.T. Laugier Application of composite hardness models to copper thin film hardness measurement, Surf. Coat. Technol., Volume 199 (2005), p. 32

[26] A.K. Bhattacharya; W.D. Nix Analysis of elastic and plastic deformation associated with indentation testing of thin films on substrates, Int. J. Solids Struct., Volume 24 (1988), pp. 1287-1298

[27] F. Mammeri; E. Le Bourhis; L. Rozes; C. Sanchez; A. Huignard; D. Lefevre Time dependence of the indentation behavior of hybrid coatings, J. Non-Cryst. Sol., Volume 345–346 (2004), pp. 610-614

[28] F. Mammeri; E. Le Bourhis; L. Rozes; C. Sanchez Elaboration and mechanical characterization of nanocomposites thin films: Part I: Determination of the mechanical properties of thin films prepared by in situ polymerisation of tetraethoxysilane in poly(methyl methacrylate), J. Eur. Cer. Soc., Volume 26 (2006), pp. 259-266

[29] G. Geandier; P.-O. Renault; E. Le Bourhis; Ph. Goudeau; D. Faurie; C. Le Bourlot; Ph. Djémia; O. Castelnau; S.M. Chérif Elastic-strain distribution in metallic film–polymer substrate composites, Appl. Phys. Lett., Volume 96 (2010), p. 041905

[30] N. Chemin; L. Rozes; C. Chanéac; S. Cassaignon; E. Le Bourhis; J.-P. Jolivet; O. Spalla; E. Barthel; C. Sanchez Structure and mechanical properties of mesostructured functional hybrid coatings based on anisotropic nanoparticles dispersed on poly(hydroxylethyl methacrylate), Chem. Mater., Volume 20 (2008), pp. 4602-4611

Cited by Sources:

Comments - Policy