Comptes Rendus
Wave equation with p(x,t)-Laplacian and damping term: Blow-up of solutions
[Equation des ondes avec p(x,t)-Laplacian et un tèrme dissipatif : Blow-up des solutions]
Comptes Rendus. Mécanique, Volume 339 (2011) no. 12, pp. 751-755.

On considère le problème de Dirichlet pour lʼéquation

utt=div(a(x,t)|u|p(x,t)2u)+αut+b(x,t)|u|σ(x,t)2u
α0 est une constante, a(x,t), b(x,t) sont des coefficients variables et p(x,t),σ(x,t) sont des exposants nonlinéaires. Sous conditions appropriées on étudie le temps fini de blow-up des solutions.

We study the Dirichlet problem for equation

utt=div(a(x,t)|u|p(x,t)2u)+αut+b(x,t)|u|σ(x,t)2u
in which α is a nonnegative constant, the coefficients a(x,t), b(x,t) and the exponents of nonlinearity p(x,t), σ(x,t) are given functions. Under suitable conditions on the data, we study the finite time blow-up of the solutions.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2011.09.001
Keywords: Waves, Nonlinear wave equation, Energy estimates, Variable nonlinearity, Nonstandard growth conditions, Blow-up
Mot clés : Ondes, Équation des ondes nonlinéaire, Estimations énergétiques, Nonlinéarités variables, Croissance non standard, Blow-up
Stanislav Antontsev 1

1 CMAF, University of Lisbon, Av. Prof. Gama Pinto, 2, 1649-003 Lisbon, Portugal
@article{CRMECA_2011__339_12_751_0,
     author = {Stanislav Antontsev},
     title = {Wave equation with $ p(x,t)${-Laplacian} and damping term: {Blow-up} of solutions},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {751--755},
     publisher = {Elsevier},
     volume = {339},
     number = {12},
     year = {2011},
     doi = {10.1016/j.crme.2011.09.001},
     language = {en},
}
TY  - JOUR
AU  - Stanislav Antontsev
TI  - Wave equation with $ p(x,t)$-Laplacian and damping term: Blow-up of solutions
JO  - Comptes Rendus. Mécanique
PY  - 2011
SP  - 751
EP  - 755
VL  - 339
IS  - 12
PB  - Elsevier
DO  - 10.1016/j.crme.2011.09.001
LA  - en
ID  - CRMECA_2011__339_12_751_0
ER  - 
%0 Journal Article
%A Stanislav Antontsev
%T Wave equation with $ p(x,t)$-Laplacian and damping term: Blow-up of solutions
%J Comptes Rendus. Mécanique
%D 2011
%P 751-755
%V 339
%N 12
%I Elsevier
%R 10.1016/j.crme.2011.09.001
%G en
%F CRMECA_2011__339_12_751_0
Stanislav Antontsev. Wave equation with $ p(x,t)$-Laplacian and damping term: Blow-up of solutions. Comptes Rendus. Mécanique, Volume 339 (2011) no. 12, pp. 751-755. doi : 10.1016/j.crme.2011.09.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2011.09.001/

[1] S.N. Antontsev; S.I. Shmarev Elliptic Equations with Anisotropic Nonlinearity and Nonstandard Growth Conditions, Handbook of Differential Equations, Stationary Partial Differential Equations, vol. 3, Elsevier, 2006 (Chapter 1, pp. 1–100)

[2] S.N. Antontsev, S.I. Shmarev, Extinction of solutions of parabolic equations with variable anisotropic nonlinearities, in: Proceedings of the Steklov Institute of Mathematics, vol. 268, Moscow, Russia, 2008, pp. 2289–2301.

[3] S.N. Antontsev; S.I. Shmarev Blow-up of solutions to parabolic equations with non-standard growth conditions, J. Comput. Appl. Math., Volume 234 (2010), pp. 2633-2645

[4] S.N. Antontsev; S.I. Shmarev Vanishing solutions of anisotropic parabolic equations with variable nonlinearity, J. Math. Anal. Appl., Volume 361 (2010), pp. 371-391

[5] S.N. Antontsev; J.I. Díaz; S. Shmarev Energy Methods for Free Boundary Problems: Applications to Non-Linear PDEs and Fluid Mechanics, Progress in Nonlinear Differential Equations and Their Applications, vol. 48, Bikhäuser, Boston, 2002

[6] S.N. Antontsev; J.F. Rodrigues On stationary thermo-rheological viscous flows, Ann. Univ. Ferrara, Sez. VII Sci. Mat., Volume 52 (2006), pp. 19-36

[7] K. Rajagopal; M. Ru̇žička Mathematical modeling of electro-rheological fluids, Cont. Mech. Therm., Volume 13 (2001), pp. 59-78

[8] M. Ru̇žička Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Mathematics, vol. 1748, Springer, Berlin, 2000

[9] A. Benaissa; S. Mokeddem Decay estimates for the wave equation of p-Laplacian type with dissipation of m-Laplacian type, Math. Methods Appl. Sci., Volume 30 (2007), pp. 237-247

[10] V.A. Galaktionov; S.I. Pohozaev Blow-up and critical exponents for nonlinear hyperbolic equations, Nonlinear Anal., Volume 53 (2003), pp. 453-466

[11] H. Gao; T.F. Ma Global solutions for a nonlinear wave equation with p-Laplacian operator, EJQTDE (1999), pp. 1-13

[12] T. Kato Blow up of solutions of some nonlinear hyperbolic equations, Manuscripta Math., Volume 28 (1980), pp. 235-268

[13] S.A. Messaoudi; B. Said Houari Global non-existence of solutions of a class of wave equations with non-linear damping and source terms, Math. Methods Appl. Sci., Volume 27 (2004), pp. 1687-1696

[14] È. Mitidieri; S.I. Pokhozhaev A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities, Tr. Mat. Inst. Steklova, Volume 234 (2001), pp. 1-384

[15] J. Serrin; G. Todorova; E. Vitillaro Existence for a nonlinear wave equation with damping and source terms, Differential Integral Equations, Volume 16 (2003), pp. 13-50

[16] Z. Yang Existence and asymptotic behavior of solutions for a class of quasi-linear evolution equations with non-linear damping and source terms, Math. Methods Appl. Sci., Volume 25 (2002), pp. 795-814

[17] Z. Yang; G. Chen Global existence of solutions for quasi-linear wave equations with viscous damping, J. Math. Anal. Appl., Volume 285 (2003), pp. 604-618

[18] Y. Zhijian Existence and asymptotic behavior of solutions for a class of quasi-linear evolution equations with non-linear damping and source terms, Math. Methods Appl. Sci., Volume 25 (2002), pp. 795-814

[19] S. Antontsev, Wave equation with p(x,t)-Laplacian and damping term: Local and global existence, RACSAM, Rev. R. Acad. Cien. Serie A. Mat., pp. 1–15, submitted for publication.

[20] S. Antontsev, Wave equation with p(x,t)-Laplacian and damping term: Existence and blow-up, in: Abstracts of the International Congress “Nonlinear Models in Partial Differential Equations”, Toledo, Spain, June 14–17, 2011.

[21] J. Haehnle; A. Prohl Approximation of nonlinear wave equations with nonstandard anisotropic growth conditions, Math. Comp., Volume 79 (2010), pp. 189-208

[22] J.P. Pinasco Blow-up for parabolic and hyperbolic problems with variable exponents, Nonlinear Anal., Volume 71 (2009), pp. 1094-1099

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Homogenization of a class of nonlinear elliptic equations with nonstandard growth

Brahim Amaziane; Stanislav Antontsev; Leonid Pankratov

C. R. Méca (2007)


Homogenization of pε(x)-Laplacian in perforated domains with a nonlocal transmission condition

Brahim Amaziane; Leonid Pankratov; Vladyslav Prytula

C. R. Méca (2009)


On global existence and bounds for the blow-up time in a semilinear heat equation involving parametric variable sources

Rabil Ayazoglu (Mashiyev); Ebubekir Akkoyunlu; Tuba Agirman Aydin

C. R. Méca (2021)