Comptes Rendus
Soot and radiation modeling in laminar ethylene flames with tabulated detailed chemistry
Comptes Rendus. Mécanique, Volume 339 (2011) no. 12, pp. 756-769.

A strategy has been developed in order to compute unsteady convective and radiative heat transfers in an industrial combustion device. This strategy involves a tabulation method to describe gas-phase chemistry, coupled with a semi-empirical soot model. A Monte Carlo method is used to evaluate gas and soot radiative transfer. This paper presents the first validation step of this strategy, in which four laminar premixed ethylene flames have been simulated. The tabulation method well predicts gas-phase species concentrations, including acetylene, considered as the main soot precursor. The soot model gives results in the experimental uncertainty range of measurements, whereas radiative powers highlight the dominating role of soot particles.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2011.09.004
Keywords: Combustion, Soot modeling, Radiative transfer modeling, Sooting flames, Tabulated chemistry

Luc-Henry Dorey 1; Nicolas Bertier 1; Lionel Tessé 1; Francis Dupoirieux 2

1 Onera – The French Aerospace Lab, 29, avenue de la Division Leclerc, 92322 Châtillon cedex, France
2 Onera – The French Aerospace Lab, 91761 Palaiseau cedex, France
@article{CRMECA_2011__339_12_756_0,
     author = {Luc-Henry Dorey and Nicolas Bertier and Lionel Tess\'e and Francis Dupoirieux},
     title = {Soot and radiation modeling in laminar ethylene flames with tabulated detailed chemistry},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {756--769},
     publisher = {Elsevier},
     volume = {339},
     number = {12},
     year = {2011},
     doi = {10.1016/j.crme.2011.09.004},
     language = {en},
}
TY  - JOUR
AU  - Luc-Henry Dorey
AU  - Nicolas Bertier
AU  - Lionel Tessé
AU  - Francis Dupoirieux
TI  - Soot and radiation modeling in laminar ethylene flames with tabulated detailed chemistry
JO  - Comptes Rendus. Mécanique
PY  - 2011
SP  - 756
EP  - 769
VL  - 339
IS  - 12
PB  - Elsevier
DO  - 10.1016/j.crme.2011.09.004
LA  - en
ID  - CRMECA_2011__339_12_756_0
ER  - 
%0 Journal Article
%A Luc-Henry Dorey
%A Nicolas Bertier
%A Lionel Tessé
%A Francis Dupoirieux
%T Soot and radiation modeling in laminar ethylene flames with tabulated detailed chemistry
%J Comptes Rendus. Mécanique
%D 2011
%P 756-769
%V 339
%N 12
%I Elsevier
%R 10.1016/j.crme.2011.09.004
%G en
%F CRMECA_2011__339_12_756_0
Luc-Henry Dorey; Nicolas Bertier; Lionel Tessé; Francis Dupoirieux. Soot and radiation modeling in laminar ethylene flames with tabulated detailed chemistry. Comptes Rendus. Mécanique, Volume 339 (2011) no. 12, pp. 756-769. doi : 10.1016/j.crme.2011.09.004. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2011.09.004/

[1] M. Di Domenico; P. Gerlinger; M. Aigner Development and validation of a new soot formation model for gas turbine combustor simulations, Combust. Flame, Volume 157 (2010), pp. 246-258

[2] R.S. Mehta; D.C. Haworth; M.F. Modest Composition PDF/photon Monte Carlo modeling of moderately sooting turbulent jet flames, Combust. Flame, Volume 157 (2010), pp. 982-994

[3] G. Boudier; L.Y.M. Gicquel; T. Poinsot; D. Bissières; C. Bérat Comparison of LES, RANS and experiments in an aeronautical gas turbine combustion chamber, Proc. Combust. Inst., Volume 31 (2007), pp. 3075-3082

[4] G. Boudier; L.Y.M. Gicquel; T.J. Poinsot Effects of mesh resolution on large eddy simulation of reacting flows in complex geometry combustors, Combust. Flame, Volume 155 (2008), pp. 196-214

[5] P. Schmitt; T. Poinsot; B. Schuermans; K.P. Geigle Large-eddy simulation and experimental study of heat transfer, nitric oxide emissions and combustion instability in a swirled turbulent high-pressure burner, J. Fluid Mech., Volume 570 (2007), pp. 17-46

[6] H. Wang Formation of nascent soot and other condensed-phase materials in flames, Proc. Combust. Inst., Volume 33 (2011), pp. 41-67

[7] H. Wang; M. Frenklach A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames, Combust. Flame, Volume 110 (1997), pp. 173-221

[8] J. Appel; H. Bockhorn; M. Frenklach Kinetic modeling of soot formation with detailed chemistry and physics: laminar premixed flames of C2 hydrocarbons, Combust. Flame, Volume 121 (2000), pp. 122-136

[9] A. DʼAnna; J.H. Kent; R.J. Santoro Investigation of species concentration and soot formation in a co-flowing diffusion flame of ethylene, Combust. Sci. Technol., Volume 179 (2007), pp. 355-369

[10] R.J. Santoro; T.T. Yeh; J.J. Horvath; H.G. Semerjian The transport and growth of soot particles in laminar diffusion flames, Combust. Sci. Technol., Volume 53 (1987), pp. 89-115

[11] Q. Zhang; M.J. Thomson; H. Guo; F. Liu; G.J. Smallwood A numerical study of soot aggregate formation in a laminar coflow diffusion flame, Combust. Flame, Volume 156 (2009), pp. 697-705

[12] M.B. Colket; R.J. Hall Successes and uncertainties in modeling soot formation in laminar, premixed flames (H. Bockhorn, ed.), Soot Formation in Combustion: Mechanisms and Models, Springer-Verlag, New York, 1994, pp. 442-470

[13] C.S. McEnally; A.M. Schaffer; M.B. Long; L.D. Pfefferle; M.D. Smooke; M.B. Colket; R.J. Hall Computational and experimental study of soot formation in a coflow, laminar ethylene diffusion flame, Symp. (Int.) Combust., Volume 27 (1998), pp. 1497-1505

[14] R.P. Lindstedt; S.A. Louloudi Joint-scalar transported PDF modeling of soot formation and oxidation, Proc. Combust. Inst., Volume 30 (2005), pp. 775-783

[15] F. Mauss; K. Netzell; H. Lehtiniemi Aspects of modeling soot formation in turbulent diffusion flames, Combust. Sci. Technol., Volume 178 (2006), pp. 1871-1885

[16] H. Guo; G.J. Smallwood A numerical study on the influence of CO2 addition on soot formation in an ethylene/air diffusion flame, Combust. Sci. Technol., Volume 180 (2008), pp. 1695-1708

[17] B. Zamuner; F. Dupoirieux Numerical simulation of soot formation in a turbulent flame with a Monte Carlo PDF approach and detailed chemistry, Combust. Sci. Technol., Volume 158 (2000), pp. 407-438

[18] K.M. Leung; R.P. Lindstedt; W.P. Jones A simplified reaction mechanism for soot formation in nonpremixed flames, Combust. Flame, Volume 87 (1991), pp. 289-305

[19] P.R. Lindstedt Simplified soot nucleation and surface growth steps for non-premixed flames (H. Bockhorn, ed.), Soot Formation in Combustion: Mechanisms and Models, Springer-Verlag, New York, 1994, pp. 417-441

[20] Yunardi; R.M. Woolley; M. Fairweather Conditional moment closure prediction of soot formation in turbulent, nonpremixed ethylene flames, Combust. Flame, Volume 152 (2008), pp. 360-376

[21] D.O. Lignell; J.C. Hewson; J.H. Chen A-priori analysis of conditional moment closure modeling of a temporal ethylene jet flame with soot formation using direct numerical simulation, Proc. Combust. Inst., Volume 32 (2009), pp. 1491-1498

[22] A. Kronenburg; R.W. Bilger; J.H. Kent Modeling soot formation in turbulent methane–air jet diffusion flames, Combust. Flame, Volume 121 (2000), pp. 24-40

[23] J.B. Moss; C.D. Stewart; K.J. Young Modeling soot formation and burnout in a high temperature laminar diffusion flame burning under oxygen-enriched conditions, Combust. Flame, Volume 101 (1995), pp. 491-500

[24] K.J. Syed; C.D. Stewart; J.B. Moss Modelling soot formation and thermal radiation in buoyant turbulent diffusion flames, Proc. Combust. Inst., Volume 23 (1991), pp. 1533-1541

[25] S.J. Brookes; J.B. Moss Predictions of soot and thermal radiation properties in confined turbulent jet diffusion flames, Combust. Flame, Volume 116 (1999), pp. 486-503

[26] O.V. Roditcheva; X.S. Bai Pressure effect on soot formation in turbulent diffusion flames, Chemosphere, Volume 42 (2001), pp. 811-821

[27] C.K. Law Comprehensive description of chemistry in combustion modeling, Combust. Sci. Technol., Volume 177 (2005), pp. 845-870

[28] O. Gicquel; N. Darabiha; D. Thévenin Laminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion, Proc. Combust. Inst., Volume 28 (2000), pp. 1901-1908

[29] U. Maas; S.B. Pope Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space, Combust. Flame, Volume 88 (1992), pp. 239-264

[30] B. Fiorina; R. Vicquelin; P. Auzillon; N. Darabiha; O. Gicquel; D. Veynante A filtered tabulated chemistry model for LES of premixed combustion, Combust. Flame, Volume 157 (2010), pp. 465-475

[31] R. Vicquelin; B. Fiorina; N. Darabiha; O. Gicquel; D. Veynante Coupling tabulated chemistry with large eddy simulation of turbulent reactive flows, C. R. Mec., Volume 337 (2009), pp. 329-339

[32] I.M. Kennedy; W. Kollmann; J.-Y. Chen A model for soot formation in a laminar diffusion flame, Combust. Flame, Volume 81 (1990), pp. 73-85

[33] C.W. Lautenberger; J.L. de Ris; N.A. Dembsey; J.R. Barnett; H.R. Baum A simplified model for soot formation and oxidation in CFD simulation of non-premixed hydrocarbon flames, Fire Safety J., Volume 40 (2005), pp. 141-176

[34] J.B. Moss Modelling soot formation for turbulent flame prediction (H. Bockhorn, ed.), Soot Formation in Combustion: Mechanisms and Models, Springer-Verlag, New York, 1994, pp. 551-568

[35] B.F. Magnussen; B.H. Hjertager On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion, Symp. (Int.) Combust., Volume 16 (1977), pp. 719-729

[36] R. Said; A. Garo; R. Borghi Soot formation modeling for turbulent flames, Combust. Flame, Volume 108 (1997), pp. 71-86

[37] A. Refloch; B. Courbet; A. Murrone; P. Villedieu; C. Laurent; P. Gilbank; J. Troyes; L. Tessé; G. Chaineray; J.B. Dargaud; E. Quémerais; F. Vuillot CEDRE software, 2011 http://www.aerospacelab-journal.org

[38] J. Galpin; A. Naudin; L. Vervisch; C. Angelberger; O. Colin; P. Domingo Large-eddy simulation of a fuel-lean premixed turbulent swirl-burner, Combust. Flame, Volume 155 (2008), pp. 247-266

[39] J. Savre; N. Bertier; Y. DʼAngelo; D. Gaffié A chemical time scale approach for FPI modeling, C. R. Mec., Volume 336 (2008), pp. 807-812

[40] R.J. Kee, J.F. Grcar, M. Smooke, J.A. Miller, A Fortran program for modeling steady laminar one-dimensional premixed flame, Tech. Rep. SAND85-8240, Sandia National Laboratories, 1985.

[41] B. Fiorina; R. Baron; O. Gicquel; D. Thevenin; S. Carpentier; N. Darabiha Modelling non-adiabatic partially premixed flames using flame-prolongation of ILDM, Combust. Theor. Model., Volume 7 (2003), pp. 449-470

[42] H. El-Asrag; S. Menon Large eddy simulation of soot formation in a turbulent non-premixed jet flame, Combust. Flame, Volume 156 (2009), pp. 385-395

[43] G. Ma; J.Z. Wen; M.F. Lightstone; M.J. Thomson Optimization of soot modeling in turbulent nonpremixed ethylene/air jet flames, Combust. Sci. Technol., Volume 177 (2005), pp. 1567-1602

[44] D.O. Lignell; J.H. Chen; P.J. Smith; T. Lu; C.K. Law The effect of flame structure on soot formation and transport in turbulent nonpremixed flames using direct numerical simulation, Combust. Flame, Volume 151 (2007), pp. 2-28

[45] M. Frenklach; H. Wang Detailed mechanism and modeling of soot particle formation (H. Bockhorn, ed.), Soot Formation in Combustion: Mechanisms and Models, Springer-Verlag, New York, 1994, pp. 165-192

[46] S.J. Harris; A.M. Weiner Chemical kinetics of soot particle growth, Ann. Rev. Phys. Chem., Volume 36 (1985), pp. 31-52

[47] F. Liu; K.A. Thomson; H. Guo; G.J. Smallwood Numerical and experimental study of an axisymmetric coflow laminar methane–air diffusion flame at pressures between 5 and 40 atmospheres, Combust. Flame, Volume 146 (2006), pp. 456-471

[48] F. Liu; H. Guo; G.J. Smallwood; Ömer L. Gülder Effects of gas and soot radiation on soot formation in a coflow laminar ethylene diffusion flame, J. Quant. Spectrosc. Radiat. Transfer, Volume 73 (2002), pp. 409-421

[49] M. Fairweather; W.P. Jones; H.S. Ledin; R.P. Lindstedt Predictions of soot formation in turbulent, non-premixed propane flames, Symp. (Int.) Combust., Volume 24 (1992), pp. 1067-1074

[50] F. Xu; P.B. Sunderland; G.M. Faeth Soot formation in laminar premixed ethylene/air flames at atmospheric pressure, Combust. Flame, Volume 108 (1997), pp. 471-493

[51] C.P. Arana; M. Pontoni; S. Sen; I.K. Puri Field measurements of soot volume fractions in laminar partially premixed coflow ethylene/air flames, Combust. Flame, Volume 138 (2004), pp. 362-372

[52] O.A. Ezekoye; Z. Zhang Soot oxidation and agglomeration modeling in a microgravity diffusion flame, Combust. Flame, Volume 110 (1997), pp. 127-139

[53] A.D. Abid; N. Heinz; E.D. Tolmachoff; D.J. Phares; C.S. Campbell; H. Wang On evolution of particle size distribution functions of incipient soot in premixed ethylene–oxygen–argon flames, Combust. Flame, Volume 154 (2008), pp. 775-788

[54] B. Öktem; M.P. Tolocka; B. Zhao; H. Wang; M.V. Johnston Chemical species associated with the early stage of soot growth in a laminar premixed ethylene–oxygen–argon flame, Combust. Flame, Volume 142 (2005), pp. 364-373

[55] L. Tessé; F. Dupoirieux; B. Zamuner; J. Taine Radiative transfer in real gases using reciprocal and forward Monte Carlo methods and a correlated-k approach, Int. J. Heat Mass Transfer, Volume 45 (2002), pp. 2797-2814

[56] L. Tessé; F. Dupoirieux; J. Taine Monte Carlo modeling of radiative transfer in a turbulent sooty flame, Int. J. Heat Mass Transfer, Volume 47 (2004), pp. 555-572

[57] V. Eymet; A.M. Brasil; M. El Hafi; T.L. Farias; P.J. Coelho Numerical investigation of the effect of soot aggregation on the radiative properties in the infrared region and radiative heat transfer, J. Quant. Spectrosc. Radiat. Transfer, Volume 74 (2002), pp. 697-718

[58] R.S. Mehta; D.C. Haworth; M.F. Modest An assessment of gas-phase reaction mechanisms and soot models for laminar atmospheric-pressure ethylene–air flames, Proc. Combust. Inst., Volume 32 (2009), pp. 1327-1334

[59] B. Zhao; Z. Yang; J. Wang; M.V. Johnston; H. Wang Analysis of soot nanoparticles in a laminar premixed ethylene flame by scanning mobility particle sizer, Aerosol Sci. Technol., Volume 37 (2003), pp. 611-620

[60] B. Zhao; Z. Yang; M.V. Johnston; H. Wang; A.S. Wexler; M. Balthasar; M. Kraft Measurement and numerical simulation of soot particle size distribution functions in a laminar premixed ethylene–oxygen–argon flame, Combust. Flame, Volume 133 (2003), pp. 173-188

[61] Z. Qin; V.V. Lissianski; H. Yang; W.C. Gardiner; S.G. Davis; H. Wang Combustion chemistry of propane: a case study of detailed reaction mechanism optimization, Proc. Combust. Inst., Volume 28 (2000), pp. 1663-1669

[62] T.J. Poinsot; S.K. Lele Boundary conditions for direct simulations of compressible viscous flows, J. Comput. Phys., Volume 101 (1992), pp. 104-129

[63] P.A. Tesner; T.D. Smegiriova; V.G. Knorre Kinetics of dispersed carbon formation, Combust. Flame, Volume 17 (1971), pp. 253-260

[64] J. Singh; R.I.A. Patterson; M. Kraft; H. Wang Numerical simulation and sensitivity analysis of detailed soot particle size distribution in laminar premixed ethylene flames, Combust. Flame, Volume 145 (2006), pp. 117-127

[65] A.D. Abid; E.D. Tolmachoff; D.J. Phares; H. Wang; Y. Liu; A. Laskin Size distribution and morphology of nascent soot in premixed ethylene flames with and without benzene doping, Proc. Combust. Inst., Volume 32 (2009), pp. 681-688

[66] C.A. Echavarria; A.F. Sarofim; J.S. Lighty; A. DʼAnna Modeling and measurements of size distributions in premixed ethylene and benzene flames, Proc. Combust. Inst., Volume 32 (2009), pp. 705-711

[67] C.S. McEnally; L.D. Pfefferle; B. Atakan; K. Kohse-Höinghaus Studies of aromatic hydrocarbon formation mechanisms in flames: progress towards closing the fuel gap, Prog. Energy Combust. Sci., Volume 32 (2006), pp. 247-294

[68] K.B. Lee; M.W. Thring; J.M. Beér On the rate of combustion of soot in a laminar soot flame, Combust. Flame, Volume 6 (1962), pp. 137-145

[69] D. Bradley; G. Dixon-Lewis; S.E. din Habik; E.M.J. Mushi The oxidation of graphite powder in flame reaction zones, Proc. Combust. Inst., Volume 20 (1985), pp. 931-940

Cited by Sources:

Comments - Policy