Comptes Rendus
Superhydrophobic surfaces: From the lotus leaf to the submarine
Comptes Rendus. Mécanique, Volume 340 (2012) no. 1-2, pp. 18-34.

In this review we discuss the current state of the art in evaluating the fabrication and performance of biomimetic superhydrophobic materials and their applications in engineering sciences. Superhydrophobicity, often referred to as the lotus effect, could be utilized to design surfaces with minimal skin-friction drag for applications such as self-cleaning and energy conservation. We start by discussing the concept of the lotus effect and continue to present a review of the recent advances in manufacturing superhydrophobic surfaces with ordered and disordered microstructures. We then present a discussion on the resistance of the air–water interface to elevated pressures—the phenomenon that enables a water strider to walk on water. We conclude the article by presenting a brief overview of the latest advancements in studying the longevity of submerged superhydrophobic surfaces for underwater applications.

Publié le :
DOI : 10.1016/j.crme.2011.11.002
Mots clés : Biomimetic, Superhydrophobic, Slip flow, Drag reduction, Lotus effect, Microfabrication, Electrospinning
Mohamed A. Samaha 1 ; Hooman Vahedi Tafreshi 1 ; Mohamed Gad-el-Hak 1

1 Department of Mechanical & Nuclear Engineering, Virginia Commonwealth University, Richmond, VA 23284-3015, USA
@article{CRMECA_2012__340_1-2_18_0,
     author = {Mohamed A. Samaha and Hooman Vahedi Tafreshi and Mohamed Gad-el-Hak},
     title = {Superhydrophobic surfaces: {From} the lotus leaf to the submarine},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {18--34},
     publisher = {Elsevier},
     volume = {340},
     number = {1-2},
     year = {2012},
     doi = {10.1016/j.crme.2011.11.002},
     language = {en},
}
TY  - JOUR
AU  - Mohamed A. Samaha
AU  - Hooman Vahedi Tafreshi
AU  - Mohamed Gad-el-Hak
TI  - Superhydrophobic surfaces: From the lotus leaf to the submarine
JO  - Comptes Rendus. Mécanique
PY  - 2012
SP  - 18
EP  - 34
VL  - 340
IS  - 1-2
PB  - Elsevier
DO  - 10.1016/j.crme.2011.11.002
LA  - en
ID  - CRMECA_2012__340_1-2_18_0
ER  - 
%0 Journal Article
%A Mohamed A. Samaha
%A Hooman Vahedi Tafreshi
%A Mohamed Gad-el-Hak
%T Superhydrophobic surfaces: From the lotus leaf to the submarine
%J Comptes Rendus. Mécanique
%D 2012
%P 18-34
%V 340
%N 1-2
%I Elsevier
%R 10.1016/j.crme.2011.11.002
%G en
%F CRMECA_2012__340_1-2_18_0
Mohamed A. Samaha; Hooman Vahedi Tafreshi; Mohamed Gad-el-Hak. Superhydrophobic surfaces: From the lotus leaf to the submarine. Comptes Rendus. Mécanique, Volume 340 (2012) no. 1-2, pp. 18-34. doi : 10.1016/j.crme.2011.11.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2011.11.002/

[1] C. Neinhuis; W. Barthlott Characterization and distribution of water-repellent, self-cleaning plant surfaces, Ann. Bot., Volume 79 (1997), pp. 667-677

[2] X. Gao; L. Jiang Water-repellent legs of water striders, Nature, Volume 432 (2004), p. 36

[3] J.P. Rothstein Slip on superhydrophobic surfaces, Annu. Rev. Fluid Mech., Volume 42 (2010), pp. 89-109

[4] C. Lee; C.-J. Kim Maximizing the giant slip on superhydrophobic microstructures by nanostructuring their sidewalls, Langmuir, Volume 25 (2009), pp. 12812-12818

[5] B. Emami; T.M. Bucher; H.V. Tafreshi; D. Pestov; M. Gad-el-Hak; G.C. Tepper Simulation of meniscus stability in superhydrophobic granular surfaces under hydrostatic pressures, Colloids Surf. A, Volume 385 (2011), pp. 95-103

[6] H. Yang; Y. Deng Preparation and physical properties of superhydrophobic papers, J. Colloid Interface Sci., Volume 325 (2008), pp. 588-593

[7] S.D. Bhagat; Y.-H. Kim; K.-H. Suh; Y.-S. Ahn; J.-G. Yeo; J.-H. Han Super hydrophobic silica aerogel powders with simultaneous surface modification, solvent exchange and sodium ion removal from hydrogels, Microporous Mesoporous Mater., Volume 112 (2008), pp. 504-509

[8] M. Ma; Y. Mao; M. Gupta; K.K. Gleason; G.C. Rutledge Superhydrophobic fabrics produced by electrospinning and chemical vapor deposition, Macromolecules, Volume 38 (2005), pp. 9742-9748

[9] A. Singh; L. Steely; H.R. Allcock Poly[bis(2,2,2-trifluoroethoxy)phosphazene] superhydrophobic nanofibers, Langmuir, Volume 21 (2005), pp. 11604-11607

[10] M. Zhu; W. Zuo; H. Yu; W. Yang; Y. Chen Superhydrophobic surface directly created by electrospinning based on hydrophilic material, J. Mater. Sci., Volume 41 (2006), pp. 3793-3797

[11] F.O. Ochanda; M.A. Samaha; H.V. Tafreshi; G.C. Tepper; M. Gad-el-Hak Fabrication of superhydrophobic fiber coatings by DC-biased AC-electrospinning, J. Appl. Polym. Sci., Volume 123 (2012), pp. 1112-1119

[12] Y.T. Cheng; D.E. Rodak; C.A. Hayden Effects of micro- and nano-structures on the self-cleaning behavior of lotus leaves, Nanotechnology, Volume 17 (2006), pp. 1359-1362

[13] K. Koch; B. Bhushan; Y.C. Jung; W. Barthlott Fabrication of artificial Lotus leaves and significance of hierarchical structure for superhydrophobicity and low adhesion, Soft Matter, Volume 5 (2009), pp. 1386-1393

[14] http://www.flickr.com/photos/rachelyin/3203932476/

[15] http://www.hk-phy.org/atomic_world/lotus/lotus01_e.html

[16] http://www.thenakedscientists.com/HTML/articles/article/biomimeticsborrowingfrombiology/

[17] M. Gad-el-Hak Flow Control: Passive, Active, and Reactive Flow Management, Cambridge University Press, London, United Kingdom, 2000

[18] M.A. Samaha; F.O. Ochanda; H.V. Tafreshi; G.C. Tepper; M. Gad-el-Hak In situ, non-invasive characterization of superhydrophobic coatings, Rev. Sci. Instrum., Volume 82 (2011), p. 045109

[19] M. Gad-el-Hak The fluid mechanics of microdevices – The Freeman scholar lecture, J. Fluids Eng., Volume 121 (1999), pp. 5-33

[20] E. Lauga; M.P. Brenner; H.A. Stone Microfluidics: the no-slip boundary condition (C. Tropea; A. Yarin; J. Foss, eds.), Handbook of Experimental Fluid Dynamics, Springer, New York, 2007

[21] J. Bico; C. Marzolin; D. Quéré Pearl drops, Europhys. Lett., Volume 47 (1999), pp. 220-226

[22] M. Callies; Y. Chen; F. Marty; A. Pépin; D. Quéré Microfabricated textured surfaces for super-hydrophobicity investigations, Microelectron. Eng., Volume 78–79 (2005), pp. 100-105

[23] C. Lee; C.-H. Choi; C.-J. Kim Structured surfaces for giant liquid slip, Phys. Rev. Lett., Volume 101 (2008), p. 064501

[24] C.L.M.H. Navier Memoire sur les lois du mouvement des fluides, Mem. Acad. R. Sci. Inst. France, Volume 6 (1823), pp. 389-440

[25] E. Lauga; H.A. Stone Effective slip in pressure-driven Stokes flow, J. Fluid Mech., Volume 489 (2003), pp. 55-77

[26] J. Ou; J.B. Perot; J.P. Rothstein Laminar drag reduction in microchannels using ultrahydrophobic surfaces, Phys. Fluids, Volume 16 (2004), pp. 4635-4643

[27] J. Ou; J.P. Rothstein Direct velocity measurements of the flow past drag-reducing ultrahydrophobic surfaces, Phys. Fluids, Volume 17 (2005), p. 103606

[28] J. Davies; D. Maynes; B.W. Webb; B. Woolford Laminar flow in a microchannel with superhydrophobic walls exhibiting transverse ribs, Phys. Fluids, Volume 18 (2006), p. 087110

[29] D. Maynes; K. Jeffs; B. Woolford; B.W. Webb Laminar flow in a microchannel with hydrophobic surface patterned microribs oriented parallel to the flow direction, Phys. Fluids, Volume 19 (2007), p. 093603

[30] C. Ybert; C. Barentin; C.-B. Cécile; P. Joseph; L. Bocquet Achieving large slip with superhydrophobic surfaces: Scaling laws for generic geometries, Phys. Fluids, Volume 19 (2007), p. 123601

[31] Y.P. Cheng; C.J. Teo; B.C. Khoo Microchannel flow with superhydrophobic surfaces: Effects of Reynolds number and pattern width to channel height ratio, Phys. Fluids, Volume 21 (2009), p. 122004

[32] R. Daniello; N.E. Waterhouse; J.P. Rothstein Turbulent drag reduction using superhydrophobic surfaces, Phys. Fluids, Volume 21 (2009), p. 085103

[33] M. Martell; J.B. Perot; J.P. Rothstein Direct numerical simulations of turbulent flows over superhydrophobic surfaces, J. Fluid Mech., Volume 620 (2009), pp. 31-41

[34] A.M.J. Davis; E. Lauga The friction of a mesh-like super-hydrophobic surface, Phys. Fluids, Volume 21 (2009), p. 113101

[35] B. Woolford; J. Prince; D. Maynes; B.W. Webb Particle image velocimetry characterization of turbulent channel flow with rib patterned superhydrophobic walls, Phys. Fluids, Volume 21 (2009), p. 085106

[36] M.A. Samaha; H.V. Tafreshi; M. Gad-el-Hak Modeling drag reduction and meniscus stability of superhydrophobic surfaces comprised of random roughness, Phys. Fluids, Volume 23 (2011), p. 012001

[37] D. Huang; C. Sendner; D. Horinek; R. Netz; L. Bocquet Water slippage versus contact angle: a quasiuniversal relationship, Phys. Rev. Lett., Volume 101 (2008), p. 226101

[38] C. Sendner; D. Horinek; L. Bocquet; R. Netz Interfacial water at hydrophobic and hydrophilic surfaces: slip, viscosity, and diffusion, Langmuir, Volume 25 (2009), pp. 10768-10781

[39] L. Bocquet; E. Charlaix Nanofluidics, from bulk to interfaces, Chem. Soc. Rev., Volume 39 (2010), pp. 1073-1095

[40] J. Bico; U. Thiele; D. Quéré Wetting of textured surfaces, Colloids Surf. A, Volume 206 (2002), pp. 41-46

[41] C. Henoch, T.N. Krupenkin, P. Kolodner, J.A. Taylor, M.S. Hodes, A.M. Lyons, C. Peguero, K. Breuer, Turbulent drag reduction using superhydrophobic surfaces, in: 3rd AIAA Flow Control Conference, San Francisco, California, 2006, p. 3192.

[42] C.-H. Choi; C.-J. Kim Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface, Phys. Rev. Lett., Volume 96 (2006), p. 066001

[43] S. Sarkar; S. Deevi; G. Tepper Biased AC electrospinning of aligned polymer nanofibers, Macromol. Rapid Commun., Volume 28 (2007), pp. 1034-1039

[44] http://commons.wikimedia.org/wiki/File:Water-strider-1.jpg

[45] X.-Q. Feng; X. Gao; Z. Wu; L. Jiang; Q.-S. Zheng Superior water repellency of water strider legs with hierarchical structures: experiments and analysis, Langmuir, Volume 23 (2007), pp. 4892-4896

[46] J.W.M. Bush; D.L. Hu Walking on water: biolocomotion at the interface, Annu. Rev. Fluid Mech., Volume 38 (2006), pp. 339-369

[47] D.L. Hu; B. Chan; J.W.M. Bush The hydrodynamics of water strider locomotion, Nature, Volume 424 (2003), pp. 663-666

[48] D.L. Hu; M. Prakash; B. Chan; J.W.M. Bush Water-walking devices, Exp. Fluids, Volume 43 (2007), pp. 769-778

[49] G.M. Stonedahl, J.D. Lattin, The Gerridae or water striders of Oregon and Washington (Hemiptera:Heteroptera), Technical Bulletin 144, Oregon State University, 1982, pp. 1–36.

[50] M.R. Flynn; J.W.M. Bush Underwater breathing: the mechanics of plastron respiration, J. Fluid Mech., Volume 608 (2008), pp. 275-296

[51] N.A. Patankar Transition between superhydrophobic states on rough surfaces, Langmuir, Volume 20 (2004), pp. 7097-7102

[52] L. Barbieri; E. Wagner; P. Hoffmann Water wetting transition parameters of perfluorinated substrates with periodically distributed flat-top microscale obstacles, Langmuir, Volume 23 (2007), pp. 1723-1734

[53] C.W. Extrand Criteria for ultralyophobic surfaces, Langmuir, Volume 20 (2004), pp. 5013-5018

[54] C.W. Extrand Designing for optimum liquid repellency, Langmuir, Volume 22 (2006), pp. 1711-1714

[55] Q.S. Zheng; Y. Yu; Z.H. Zhao Effects of hydraulic pressure on the stability and transition of wetting modes of superhydrophobic surfaces, Langmuir, Volume 21 (2005), pp. 12207-12212

[56] A. Okabe; B. Boots; K. Sugihara; S.N. Chiu; D.G. Kendall Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, John Wiley & Sons Ltd., Chichester, UK, 2000

[57] B. Emami; H.V. Tafreshi; M. Gad-el-Hak; G.C. Tepper Predicting shape and stability of air–water interface on superhydrophobic surfaces with randomly distributed, dissimilar posts, Appl. Phys. Lett., Volume 98 (2011), p. 203106

[58] T.M. Bucher, B. Emami, H.V. Tafreshi, M. Gad-el-Hak, G.C. Tepper, Modeling resistance of nanofibrous superhydrophobic coatings to hydrostatic pressures: the role of microstructure, Phys. Fluids, submitted for publication.

[59] M. Bobji; S.V. Kumar; A. Asthana; R.N. Govardhan Underwater sustainability of the “Cassie” state of wetting, Langmuir, Volume 25 (2009), pp. 12120-12126

[60] M. Sakai; T. Yanagisawa; A. Nakajima; Y. Kameshima; K. Okada Effect of surface structure on the sustainability of an air layer on superhydrophobic coatings in a water–ethanol mixture, Langmuir, Volume 25 (2009), pp. 13-16

[61] R. Poetes; K. Holtzmann; K. Franze; U. Steiner Metastable underwater superhydrophobicity, Phys. Rev. Lett., Volume 105 (2010), p. 166104

[62] D. Quéré; A. Lafuma; J. Bico Slippy and sticky microtextured solids, Nanotechnology, Volume 14 (2003), pp. 1109-1112

[63] A. Lafuma; D. Quéré Superhydrophobic states, Nat. Mater., Volume 2 (2003), pp. 457-460

[64] D. Quéré Wetting and roughness, Annu. Rev. Mater. Res., Volume 38 (2008), pp. 71-99

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Study on the drag reduction mechanism of spheres with various hydrophobic types

Ju Liu; Junwei Yu; Lingbing Kong; ...

C. R. Méca (2022)


Antiwettability enhancement of PVDF-HFP membrane via superhydrophobic modification by SiO2 nanoparticles

Moau Jian Toh; Pei Ching Oh; Thiam Leng Chew; ...

C. R. Chim (2019)