Comptes Rendus
Superhydrophobic surfaces: From the lotus leaf to the submarine
Comptes Rendus. Mécanique, Biomimetic flow control, Volume 340 (2012) no. 1-2, pp. 18-34.

In this review we discuss the current state of the art in evaluating the fabrication and performance of biomimetic superhydrophobic materials and their applications in engineering sciences. Superhydrophobicity, often referred to as the lotus effect, could be utilized to design surfaces with minimal skin-friction drag for applications such as self-cleaning and energy conservation. We start by discussing the concept of the lotus effect and continue to present a review of the recent advances in manufacturing superhydrophobic surfaces with ordered and disordered microstructures. We then present a discussion on the resistance of the air–water interface to elevated pressures—the phenomenon that enables a water strider to walk on water. We conclude the article by presenting a brief overview of the latest advancements in studying the longevity of submerged superhydrophobic surfaces for underwater applications.

Publié le :
DOI : 10.1016/j.crme.2011.11.002
Keywords: Biomimetic, Superhydrophobic, Slip flow, Drag reduction, Lotus effect, Microfabrication, Electrospinning

Mohamed A. Samaha 1 ; Hooman Vahedi Tafreshi 1 ; Mohamed Gad-el-Hak 1

1 Department of Mechanical & Nuclear Engineering, Virginia Commonwealth University, Richmond, VA 23284-3015, USA
@article{CRMECA_2012__340_1-2_18_0,
     author = {Mohamed A. Samaha and Hooman Vahedi Tafreshi and Mohamed Gad-el-Hak},
     title = {Superhydrophobic surfaces: {From} the lotus leaf to the submarine},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {18--34},
     publisher = {Elsevier},
     volume = {340},
     number = {1-2},
     year = {2012},
     doi = {10.1016/j.crme.2011.11.002},
     language = {en},
}
TY  - JOUR
AU  - Mohamed A. Samaha
AU  - Hooman Vahedi Tafreshi
AU  - Mohamed Gad-el-Hak
TI  - Superhydrophobic surfaces: From the lotus leaf to the submarine
JO  - Comptes Rendus. Mécanique
PY  - 2012
SP  - 18
EP  - 34
VL  - 340
IS  - 1-2
PB  - Elsevier
DO  - 10.1016/j.crme.2011.11.002
LA  - en
ID  - CRMECA_2012__340_1-2_18_0
ER  - 
%0 Journal Article
%A Mohamed A. Samaha
%A Hooman Vahedi Tafreshi
%A Mohamed Gad-el-Hak
%T Superhydrophobic surfaces: From the lotus leaf to the submarine
%J Comptes Rendus. Mécanique
%D 2012
%P 18-34
%V 340
%N 1-2
%I Elsevier
%R 10.1016/j.crme.2011.11.002
%G en
%F CRMECA_2012__340_1-2_18_0
Mohamed A. Samaha; Hooman Vahedi Tafreshi; Mohamed Gad-el-Hak. Superhydrophobic surfaces: From the lotus leaf to the submarine. Comptes Rendus. Mécanique, Biomimetic flow control, Volume 340 (2012) no. 1-2, pp. 18-34. doi : 10.1016/j.crme.2011.11.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2011.11.002/

[1] C. Neinhuis; W. Barthlott Characterization and distribution of water-repellent, self-cleaning plant surfaces, Ann. Bot., Volume 79 (1997), pp. 667-677

[2] X. Gao; L. Jiang Water-repellent legs of water striders, Nature, Volume 432 (2004), p. 36

[3] J.P. Rothstein Slip on superhydrophobic surfaces, Annu. Rev. Fluid Mech., Volume 42 (2010), pp. 89-109

[4] C. Lee; C.-J. Kim Maximizing the giant slip on superhydrophobic microstructures by nanostructuring their sidewalls, Langmuir, Volume 25 (2009), pp. 12812-12818

[5] B. Emami; T.M. Bucher; H.V. Tafreshi; D. Pestov; M. Gad-el-Hak; G.C. Tepper Simulation of meniscus stability in superhydrophobic granular surfaces under hydrostatic pressures, Colloids Surf. A, Volume 385 (2011), pp. 95-103

[6] H. Yang; Y. Deng Preparation and physical properties of superhydrophobic papers, J. Colloid Interface Sci., Volume 325 (2008), pp. 588-593

[7] S.D. Bhagat; Y.-H. Kim; K.-H. Suh; Y.-S. Ahn; J.-G. Yeo; J.-H. Han Super hydrophobic silica aerogel powders with simultaneous surface modification, solvent exchange and sodium ion removal from hydrogels, Microporous Mesoporous Mater., Volume 112 (2008), pp. 504-509

[8] M. Ma; Y. Mao; M. Gupta; K.K. Gleason; G.C. Rutledge Superhydrophobic fabrics produced by electrospinning and chemical vapor deposition, Macromolecules, Volume 38 (2005), pp. 9742-9748

[9] A. Singh; L. Steely; H.R. Allcock Poly[bis(2,2,2-trifluoroethoxy)phosphazene] superhydrophobic nanofibers, Langmuir, Volume 21 (2005), pp. 11604-11607

[10] M. Zhu; W. Zuo; H. Yu; W. Yang; Y. Chen Superhydrophobic surface directly created by electrospinning based on hydrophilic material, J. Mater. Sci., Volume 41 (2006), pp. 3793-3797

[11] F.O. Ochanda; M.A. Samaha; H.V. Tafreshi; G.C. Tepper; M. Gad-el-Hak Fabrication of superhydrophobic fiber coatings by DC-biased AC-electrospinning, J. Appl. Polym. Sci., Volume 123 (2012), pp. 1112-1119

[12] Y.T. Cheng; D.E. Rodak; C.A. Hayden Effects of micro- and nano-structures on the self-cleaning behavior of lotus leaves, Nanotechnology, Volume 17 (2006), pp. 1359-1362

[13] K. Koch; B. Bhushan; Y.C. Jung; W. Barthlott Fabrication of artificial Lotus leaves and significance of hierarchical structure for superhydrophobicity and low adhesion, Soft Matter, Volume 5 (2009), pp. 1386-1393

[14] http://www.flickr.com/photos/rachelyin/3203932476/

[15] http://www.hk-phy.org/atomic_world/lotus/lotus01_e.html

[16] http://www.thenakedscientists.com/HTML/articles/article/biomimeticsborrowingfrombiology/

[17] M. Gad-el-Hak Flow Control: Passive, Active, and Reactive Flow Management, Cambridge University Press, London, United Kingdom, 2000

[18] M.A. Samaha; F.O. Ochanda; H.V. Tafreshi; G.C. Tepper; M. Gad-el-Hak In situ, non-invasive characterization of superhydrophobic coatings, Rev. Sci. Instrum., Volume 82 (2011), p. 045109

[19] M. Gad-el-Hak The fluid mechanics of microdevices – The Freeman scholar lecture, J. Fluids Eng., Volume 121 (1999), pp. 5-33

[20] E. Lauga; M.P. Brenner; H.A. Stone Microfluidics: the no-slip boundary condition (C. Tropea; A. Yarin; J. Foss, eds.), Handbook of Experimental Fluid Dynamics, Springer, New York, 2007

[21] J. Bico; C. Marzolin; D. Quéré Pearl drops, Europhys. Lett., Volume 47 (1999), pp. 220-226

[22] M. Callies; Y. Chen; F. Marty; A. Pépin; D. Quéré Microfabricated textured surfaces for super-hydrophobicity investigations, Microelectron. Eng., Volume 78–79 (2005), pp. 100-105

[23] C. Lee; C.-H. Choi; C.-J. Kim Structured surfaces for giant liquid slip, Phys. Rev. Lett., Volume 101 (2008), p. 064501

[24] C.L.M.H. Navier Memoire sur les lois du mouvement des fluides, Mem. Acad. R. Sci. Inst. France, Volume 6 (1823), pp. 389-440

[25] E. Lauga; H.A. Stone Effective slip in pressure-driven Stokes flow, J. Fluid Mech., Volume 489 (2003), pp. 55-77

[26] J. Ou; J.B. Perot; J.P. Rothstein Laminar drag reduction in microchannels using ultrahydrophobic surfaces, Phys. Fluids, Volume 16 (2004), pp. 4635-4643

[27] J. Ou; J.P. Rothstein Direct velocity measurements of the flow past drag-reducing ultrahydrophobic surfaces, Phys. Fluids, Volume 17 (2005), p. 103606

[28] J. Davies; D. Maynes; B.W. Webb; B. Woolford Laminar flow in a microchannel with superhydrophobic walls exhibiting transverse ribs, Phys. Fluids, Volume 18 (2006), p. 087110

[29] D. Maynes; K. Jeffs; B. Woolford; B.W. Webb Laminar flow in a microchannel with hydrophobic surface patterned microribs oriented parallel to the flow direction, Phys. Fluids, Volume 19 (2007), p. 093603

[30] C. Ybert; C. Barentin; C.-B. Cécile; P. Joseph; L. Bocquet Achieving large slip with superhydrophobic surfaces: Scaling laws for generic geometries, Phys. Fluids, Volume 19 (2007), p. 123601

[31] Y.P. Cheng; C.J. Teo; B.C. Khoo Microchannel flow with superhydrophobic surfaces: Effects of Reynolds number and pattern width to channel height ratio, Phys. Fluids, Volume 21 (2009), p. 122004

[32] R. Daniello; N.E. Waterhouse; J.P. Rothstein Turbulent drag reduction using superhydrophobic surfaces, Phys. Fluids, Volume 21 (2009), p. 085103

[33] M. Martell; J.B. Perot; J.P. Rothstein Direct numerical simulations of turbulent flows over superhydrophobic surfaces, J. Fluid Mech., Volume 620 (2009), pp. 31-41

[34] A.M.J. Davis; E. Lauga The friction of a mesh-like super-hydrophobic surface, Phys. Fluids, Volume 21 (2009), p. 113101

[35] B. Woolford; J. Prince; D. Maynes; B.W. Webb Particle image velocimetry characterization of turbulent channel flow with rib patterned superhydrophobic walls, Phys. Fluids, Volume 21 (2009), p. 085106

[36] M.A. Samaha; H.V. Tafreshi; M. Gad-el-Hak Modeling drag reduction and meniscus stability of superhydrophobic surfaces comprised of random roughness, Phys. Fluids, Volume 23 (2011), p. 012001

[37] D. Huang; C. Sendner; D. Horinek; R. Netz; L. Bocquet Water slippage versus contact angle: a quasiuniversal relationship, Phys. Rev. Lett., Volume 101 (2008), p. 226101

[38] C. Sendner; D. Horinek; L. Bocquet; R. Netz Interfacial water at hydrophobic and hydrophilic surfaces: slip, viscosity, and diffusion, Langmuir, Volume 25 (2009), pp. 10768-10781

[39] L. Bocquet; E. Charlaix Nanofluidics, from bulk to interfaces, Chem. Soc. Rev., Volume 39 (2010), pp. 1073-1095

[40] J. Bico; U. Thiele; D. Quéré Wetting of textured surfaces, Colloids Surf. A, Volume 206 (2002), pp. 41-46

[41] C. Henoch, T.N. Krupenkin, P. Kolodner, J.A. Taylor, M.S. Hodes, A.M. Lyons, C. Peguero, K. Breuer, Turbulent drag reduction using superhydrophobic surfaces, in: 3rd AIAA Flow Control Conference, San Francisco, California, 2006, p. 3192.

[42] C.-H. Choi; C.-J. Kim Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface, Phys. Rev. Lett., Volume 96 (2006), p. 066001

[43] S. Sarkar; S. Deevi; G. Tepper Biased AC electrospinning of aligned polymer nanofibers, Macromol. Rapid Commun., Volume 28 (2007), pp. 1034-1039

[44] http://commons.wikimedia.org/wiki/File:Water-strider-1.jpg

[45] X.-Q. Feng; X. Gao; Z. Wu; L. Jiang; Q.-S. Zheng Superior water repellency of water strider legs with hierarchical structures: experiments and analysis, Langmuir, Volume 23 (2007), pp. 4892-4896

[46] J.W.M. Bush; D.L. Hu Walking on water: biolocomotion at the interface, Annu. Rev. Fluid Mech., Volume 38 (2006), pp. 339-369

[47] D.L. Hu; B. Chan; J.W.M. Bush The hydrodynamics of water strider locomotion, Nature, Volume 424 (2003), pp. 663-666

[48] D.L. Hu; M. Prakash; B. Chan; J.W.M. Bush Water-walking devices, Exp. Fluids, Volume 43 (2007), pp. 769-778

[49] G.M. Stonedahl, J.D. Lattin, The Gerridae or water striders of Oregon and Washington (Hemiptera:Heteroptera), Technical Bulletin 144, Oregon State University, 1982, pp. 1–36.

[50] M.R. Flynn; J.W.M. Bush Underwater breathing: the mechanics of plastron respiration, J. Fluid Mech., Volume 608 (2008), pp. 275-296

[51] N.A. Patankar Transition between superhydrophobic states on rough surfaces, Langmuir, Volume 20 (2004), pp. 7097-7102

[52] L. Barbieri; E. Wagner; P. Hoffmann Water wetting transition parameters of perfluorinated substrates with periodically distributed flat-top microscale obstacles, Langmuir, Volume 23 (2007), pp. 1723-1734

[53] C.W. Extrand Criteria for ultralyophobic surfaces, Langmuir, Volume 20 (2004), pp. 5013-5018

[54] C.W. Extrand Designing for optimum liquid repellency, Langmuir, Volume 22 (2006), pp. 1711-1714

[55] Q.S. Zheng; Y. Yu; Z.H. Zhao Effects of hydraulic pressure on the stability and transition of wetting modes of superhydrophobic surfaces, Langmuir, Volume 21 (2005), pp. 12207-12212

[56] A. Okabe; B. Boots; K. Sugihara; S.N. Chiu; D.G. Kendall Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, John Wiley & Sons Ltd., Chichester, UK, 2000

[57] B. Emami; H.V. Tafreshi; M. Gad-el-Hak; G.C. Tepper Predicting shape and stability of air–water interface on superhydrophobic surfaces with randomly distributed, dissimilar posts, Appl. Phys. Lett., Volume 98 (2011), p. 203106

[58] T.M. Bucher, B. Emami, H.V. Tafreshi, M. Gad-el-Hak, G.C. Tepper, Modeling resistance of nanofibrous superhydrophobic coatings to hydrostatic pressures: the role of microstructure, Phys. Fluids, submitted for publication.

[59] M. Bobji; S.V. Kumar; A. Asthana; R.N. Govardhan Underwater sustainability of the “Cassie” state of wetting, Langmuir, Volume 25 (2009), pp. 12120-12126

[60] M. Sakai; T. Yanagisawa; A. Nakajima; Y. Kameshima; K. Okada Effect of surface structure on the sustainability of an air layer on superhydrophobic coatings in a water–ethanol mixture, Langmuir, Volume 25 (2009), pp. 13-16

[61] R. Poetes; K. Holtzmann; K. Franze; U. Steiner Metastable underwater superhydrophobicity, Phys. Rev. Lett., Volume 105 (2010), p. 166104

[62] D. Quéré; A. Lafuma; J. Bico Slippy and sticky microtextured solids, Nanotechnology, Volume 14 (2003), pp. 1109-1112

[63] A. Lafuma; D. Quéré Superhydrophobic states, Nat. Mater., Volume 2 (2003), pp. 457-460

[64] D. Quéré Wetting and roughness, Annu. Rev. Mater. Res., Volume 38 (2008), pp. 71-99

  • Jubair A. Shamim; Yukinari Takahashi; Minhyeok Lee; Junho Choi; Wei-Lun Hsu; Kashif Nawaz; Nenad Miljkovic; Hirofumi Daiguji Coalescence-Induced Spontaneous Shedding of Microdroplets on Superhydrophobic Surfaces Featuring Enclosed Micropillars with Hierarchical Roughness, ACS Applied Materials Interfaces, Volume 17 (2025) no. 8, p. 12782 | DOI:10.1021/acsami.4c17859
  • Dan Luo; Lingcheng Wang; Yuanqiang Liu; Changtong Mei; Tiantian Yang Processing Hydrophilic Poplar Wood into Durably Superhydrophobic Materials with High Stability and Self-Cleaning Properties, ACS Sustainable Chemistry Engineering, Volume 13 (2025) no. 15, p. 5737 | DOI:10.1021/acssuschemeng.5c01512
  • Shin‐Taro Saiki; Anna Ilek; Yuho Ando; Norio Sahashi; Kazuki Nanko Impact of Pathogenic Fungi on Leaf Surface Wettability: A Case Study of Erysiphe castaneigena, Ecohydrology, Volume 18 (2025) no. 2 | DOI:10.1002/eco.2755
  • Hui Gao; Tianjun Yin; Jieyin Ma; Yuqin Zhou; Ke Li; Jiayi Bao Research Progress of Photothermal Superhydrophobic Surfaces for Anti-Icing/Deicing, Molecules, Volume 30 (2025) no. 9, p. 1865 | DOI:10.3390/molecules30091865
  • S. Davey; C. Atkinson; J. Soria Experimental investigation of the effects of superhydrophobic surface treatment on the flow in the near wake of a sphere at Reynolds number 7780, Physics of Fluids, Volume 37 (2025) no. 5 | DOI:10.1063/5.0260367
  • Anil Kumar Padhan; Vaishakhi Singh; Saptarshi Ray; Ravi Kumar Voolapalli High-performance multi-functional solar panel coatings: recent advances, challenges, strategies and industrial aspects, RSC Applied Polymers, Volume 3 (2025) no. 2, p. 317 | DOI:10.1039/d4lp00295d
  • Dongjie Zhang; Huandi Li; Xiao Li; Zixu Wang; Lin Shi; Ying Zheng; Yukang Liu; Lei Zhao; Yue Zhang; Chao Zhao; Zhen Zhang; Xueli Chen; Tie Wang Recent advancements in the applications of separation and enrichment strategies towards SERS detection, TrAC Trends in Analytical Chemistry, Volume 184 (2025), p. 118136 | DOI:10.1016/j.trac.2025.118136
  • Lutz Speichermann‐Jägel; Susanna Dullenkopf‐Beck; Robert Droll; Daniel Gandyra; Matthias Barczewski; Stefan Walheim; Thomas Schimmel Stable Air Retention under Water on Artificial Salvinia Surfaces Enabled by the Air Spring Effect: The Importance of Geometrical and Surface‐Energy Barriers, and of the Air Spring Height, Advanced Materials Interfaces, Volume 11 (2024) no. 36 | DOI:10.1002/admi.202400400
  • Alex Drago‐González; Maxime Fauconnier; Bhuvaneshwari Karunakaran; William S. Y. Wong; Robin H. A. Ras; Heikki J. Nieminen Ultrasonic Healing of Plastrons, Advanced Science, Volume 11 (2024) no. 33 | DOI:10.1002/advs.202403028
  • Fengqin Li; Yuxue Hu; Xiaoming Feng; Guizhong Tian Preparation and Self-Cleaning Properties of a Superhydrophobic Composite Coating on a Stainless Steel Substrate, Coatings, Volume 14 (2024) no. 2, p. 198 | DOI:10.3390/coatings14020198
  • Manuel Saldana; Sandra Gallegos; Edelmira Gálvez; Jonathan Castillo; Eleazar Salinas-Rodríguez; Eduardo Cerecedo-Sáenz; Juan Hernández-Ávila; Alessandro Navarra; Norman Toro The Reynolds Number: A Journey from Its Origin to Modern Applications, Fluids, Volume 9 (2024) no. 12, p. 299 | DOI:10.3390/fluids9120299
  • YUNFEI PENG; ZHIHANG MA; XIAO WANG; JUNRU LI; XINLIN LI; CHUANWEI ZHANG; TIAN HE; GUOQIANG LI; PENGFEI ZHANG FRACTAL SURFACE RECOVERY AND SELF-HEALING CONTRIBUTED TO SUSTAINABLE SUPERHYDROPHOBICITY: A REVIEW, Fractals, Volume 32 (2024) no. 01 | DOI:10.1142/s0218348x22401119
  • Won-Shik Chu; Malik Muhammad Shehroze; Ngoc Giang Tran; The‑Hung Dinh; Sung-Tae Hong; Doo-Man Chun Green Fabrication of Superhydrophobic Surfaces Using Laser Surface Texturing Without Toxic Chemicals: A Review, International Journal of Precision Engineering and Manufacturing, Volume 25 (2024) no. 5, p. 1101 | DOI:10.1007/s12541-024-00962-4
  • Minghui Guo; Guojun Zhang; Youmin Rong; Xiufeng Liu; Yu Huang; Congyi Wu Hierarchical structure on tin bronze hydrostatic bearing surfaces to achieve ultra-high Cassie stability, Journal of Alloys and Compounds, Volume 1005 (2024), p. 175504 | DOI:10.1016/j.jallcom.2024.175504
  • Avinash Kumar; Vishal Mishra; Yadav Narendra Kumar Rajbahadur; Sushant Negi; Simanchal Kar A comprehensive review of methodology and advancement in the development of superhydrophobic membranes for efficient oil–water separation, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Volume 46 (2024) no. 7 | DOI:10.1007/s40430-024-04954-3
  • A. V. V. R. Prasad Yandapalli; Sathyabhama A; Sarada Kuravi; Krishna Kota Liquid-infused surfaces for mitigation of corrosion and inorganic scaling, Materials Today Communications, Volume 39 (2024), p. 108865 | DOI:10.1016/j.mtcomm.2024.108865
  • A. Joulaei; H. Rahmani; S. M. Taghavi Effects of wall groove misalignment on viscoplastic flow dynamics in superhydrophobic channels, Physical Review Fluids, Volume 9 (2024) no. 12 | DOI:10.1103/physrevfluids.9.123301
  • Yang Siyi; Fan Hongbin, Proceedings of the 2024 13th International Conference on Bioinformatics and Biomedical Science (2024), p. 53 | DOI:10.1145/3704198.3705866
  • Abid Ali; David Culliton; Shah Fahad; Zafar Ali; En-Tang Kang; Liqun Xu Nature-inspired anti-fouling strategies for combating marine biofouling, Progress in Organic Coatings, Volume 189 (2024), p. 108349 | DOI:10.1016/j.porgcoat.2024.108349
  • Yali Li; Qinglin Wen; Siyi Zou; Xiong Dan; Fandi Ning; Wei Li; Pengpeng Xu; Can He; Min Shen; Lei He; Bin Tian; Xiaochun Zhou Multiscale Architectured Nafion Membrane Derived from Lotus Leaf for Fuel Cell Applications, ACS Applied Materials Interfaces, Volume 15 (2023) no. 24, p. 29084 | DOI:10.1021/acsami.3c03050
  • Alex Lonergan; Colm O'Dwyer Many Facets of Photonic Crystals: From Optics and Sensors to Energy Storage and Photocatalysis, Advanced Materials Technologies, Volume 8 (2023) no. 6 | DOI:10.1002/admt.202201410
  • Chunlian Liu; Xingjie Ren; Xinyu Wang; Mu Du; Jin Huan Pu Enhanced droplet repellency and jumping condensation on superhydrophobic lubricant-infused surfaces at high subcooling temperatures, Applied Physics A, Volume 129 (2023) no. 12 | DOI:10.1007/s00339-023-07110-1
  • Sirui Lu; Hao Lu; Lina Hu; Xiaojian Wang A numerical investigation of droplet bouncing behaviors on the superhydrophobic surfaces with different micro-structures, Case Studies in Thermal Engineering, Volume 43 (2023), p. 102728 | DOI:10.1016/j.csite.2023.102728
  • Aditya Kataria; Suhaib Zafar; Akarsh Verma; Shigenobu Ogata Molecular Dynamics Simulations in Coatings, Coating Materials (2023), p. 125 | DOI:10.1007/978-981-99-3549-9_6
  • Ahmed Faraj Alarbi Alsharief; Xili Duan; Yuri S. Muzychka Evolution of Air Plastron Thickness and Slip Length over Superhydrophobic Surfaces in Taylor Couette Flows, Fluids, Volume 8 (2023) no. 4, p. 133 | DOI:10.3390/fluids8040133
  • Xinru Du; Hidemi Mutsuda; Yuya Wasada; Takuji Nakashima Experimental and numerical Investigation on drag reduction using polymer coatings, IOP Conference Series: Materials Science and Engineering, Volume 1288 (2023) no. 1, p. 012045 | DOI:10.1088/1757-899x/1288/1/012045
  • Jiaqiang Jing; Yuying Guo; Rinat Karimov; Jie Sun; Wanni Huang; Yong Chen; Yuting Shan Drag Reduction Related to Boundary Layer Control in Transportation of Heavy Crude Oil by Pipeline: A Review, Industrial Engineering Chemistry Research, Volume 62 (2023) no. 37, p. 14818 | DOI:10.1021/acs.iecr.3c02212
  • D.V. Antonov; R.M. Fedorenko; P.A. Strizhak; S.S. Sazhin A simple model of heating and evaporation of droplets on a superhydrophobic surface, International Journal of Heat and Mass Transfer, Volume 201 (2023), p. 123568 | DOI:10.1016/j.ijheatmasstransfer.2022.123568
  • Yudong Wang; Shangjie Ge-Zhang; Pingxuan Mu; Xueqing Wang; Shaoyi Li; Lingling Qiao; Hongbo Mu Advances in Sol-Gel-Based Superhydrophobic Coatings for Wood: A Review, International Journal of Molecular Sciences, Volume 24 (2023) no. 11, p. 9675 | DOI:10.3390/ijms24119675
  • Avinash Kumar; Vishal Mishra; Sushant Negi; Simanchal Kar A systematic review on polymer-based superhydrophobic coating for preventing biofouling menace, Journal of Coatings Technology and Research, Volume 20 (2023) no. 5, p. 1499 | DOI:10.1007/s11998-023-00773-8
  • Marta Wojcieszak; Anna Syguda; Sylwia Zięba; Adam Mizera; Andrzej Łapiński; Katarzyna Materna Effect of surface-active ionic liquids structure on their synthesis, physicochemical properties, and potential use as crop protection agents, Journal of Molecular Liquids, Volume 383 (2023), p. 122050 | DOI:10.1016/j.molliq.2023.122050
  • Dmitrii V. Antonov; Anastasya G. Islamova; Pavel A. Strizhak Hydrophilic and Hydrophobic Surfaces: Features of Interaction with Liquid Drops, Materials, Volume 16 (2023) no. 17, p. 5932 | DOI:10.3390/ma16175932
  • Ruoyu Sun; Jing Zhao; Jiliang Mo; Nengkai Yu; Zhongrong Zhou Study of the drag reduction performance on steel spheres with superhydrophobic ER/ZnO coating, Materials Science and Engineering: B, Volume 288 (2023), p. 116144 | DOI:10.1016/j.mseb.2022.116144
  • Jiansan Li; Ziping Liu; Zhenyu Wang Study of nano-ZnO improvement of the mechanical properties and corrosion resistance of modified-SiO2/PTFE superhydrophobic nanocomposite coatings by one-step spraying, New Journal of Chemistry, Volume 47 (2023) no. 13, p. 6246 | DOI:10.1039/d2nj06376j
  • Ahmed Mohamed; Xili Duan; Baafour Nyantekyi-Kwakye; Yuri S. Muzychka, Proceeding of 8th Thermal and Fluids Engineering Conference (TFEC) (2023), p. 1015 | DOI:10.1615/tfec2023.exp.045753
  • Manon Saget; Nicolas Nuns; Philippe Supiot; Corinne Foissac; Séverine Bellayer; Kevin Dourgaparsad; Pierre-Alexandre Royoux; Guillaume Delaplace; Vincent Thomy; Yannick Coffinier; Maude Jimenez Ultra-hydrophobic biomimetic transparent bilayer thin film deposited by atmospheric pressure plasma, Surfaces and Interfaces, Volume 42 (2023), p. 103398 | DOI:10.1016/j.surfin.2023.103398
  • Li Shi; Fuquan Tu; Yingjiu Luo Energy absorption characteristics of the bionic lotus petiole structure under transverse load, Thin-Walled Structures, Volume 187 (2023), p. 110748 | DOI:10.1016/j.tws.2023.110748
  • Yuegan Song; Yanlei Hu; Yachao Zhang; Guoqiang Li; Dawei Wang; Yi Yang; Yafeng Zhang; Yiyuan Zhang; Wulin Zhu; Jiawen Li; Dong Wu; Jiaru Chu Flexible Tri-switchable Wettability Surface for Versatile Droplet Manipulations, ACS Applied Materials Interfaces, Volume 14 (2022) no. 32, p. 37248 | DOI:10.1021/acsami.2c12890
  • Athanasios Smyrnakis; Dimosthenis Ioannou; Kosmas Ellinas; Angeliki Tserepi; Evangelos Gogolides Real‐Time Monitoring and Quantification of Underwater Superhydrophobicity, Advanced Materials Interfaces, Volume 9 (2022) no. 4 | DOI:10.1002/admi.202101393
  • A. I. Ukolov; T. N. Popova Efficiency of the Use of Commercial Superhydrophobic Coatings in the Fields of Marine Industry, Colloid Journal, Volume 84 (2022) no. 4, p. 465 | DOI:10.1134/s1061933x22040111
  • Glenda Quaresma Ramos; Robert Saraiva Matos; Abhijeet Das; Sanjeev Kumar; Ştefan Ţălu; Henrique Duarte da Fonseca Filho Correlating Morphology and Multifractal Spatial Patterns of the Leaf Surface Architecture of Anacardium occidentale L., Fractal and Fractional, Volume 6 (2022) no. 6, p. 320 | DOI:10.3390/fractalfract6060320
  • Qing-hua Wang; Hui-xin Wang Laser surface functionalization to achieve extreme surface wetting conditions and resultant surface functionalities, Journal of Central South University, Volume 29 (2022) no. 10, p. 3217 | DOI:10.1007/s11771-022-5140-4
  • Ashok Kumar Gupta; Suryakanta Nayak; Rakesh S. Moirangthem; T. Venugopalan; A. N. Bhagat; Tapan Kumar Rout A study on the preparation of passivating surface using bi-layer of nanostructured ZnO and silane functionalized polymer: an alternate option to chromate passivating coating, Journal of Coatings Technology and Research, Volume 19 (2022) no. 4, p. 1101 | DOI:10.1007/s11998-021-00588-5
  • Hong Li; Xinyu Fu; Xingwen Chu Applicability of anti-corrosion for slippery liquid-infused porous surface using a double-layer ZnO nanostructure on Al foil, Journal of Materials Science, Volume 57 (2022) no. 5, p. 3746 | DOI:10.1007/s10853-021-06819-9
  • Lansheng Zhang; Xiaoyang Chu; Feng Tian; Yang Xu; Huan Hu Bio-Inspired Hierarchical Micro-/Nanostructures for Anti-Icing Solely Fabricated by Metal-Assisted Chemical Etching, Micromachines, Volume 13 (2022) no. 7, p. 1077 | DOI:10.3390/mi13071077
  • Xinwei Chen; Mingyang Wang; Yao Xin; Yanru Huang One-step fabrication of self-cleaning superhydrophobic surfaces: A combined experimental and molecular dynamics study, Surfaces and Interfaces, Volume 31 (2022), p. 102022 | DOI:10.1016/j.surfin.2022.102022
  • Hanieh Bazyar; Othonas A. Moultos; Rob G. H. Lammertink A review on nature-inspired gating membranes: From concept to design and applications, The Journal of Chemical Physics, Volume 157 (2022) no. 14 | DOI:10.1063/5.0105641
  • Seongkwang Heo; Woorak Choi; Sang Joon Lee Enhanced air stability of ridged superhydrophobic surface with nanostructure, AIP Advances, Volume 11 (2021) no. 10 | DOI:10.1063/5.0067279
  • Hamza Shams; Kanza Basit; Muhammad Ali Khan; Sajid Saleem; Asif Mansoor Realizing surface amphiphobicity using 3D printing techniques: A critical move towards manufacturing low-cost reentrant geometries, Additive Manufacturing, Volume 38 (2021), p. 101777 | DOI:10.1016/j.addma.2020.101777
  • Gaoxiang Wu; Yiping Zhao; Dengteng Ge; Yubo Zhao; Lili Yang; Shu Yang Highly Robust, Pressure‐Resistant Superhydrophobic Coatings from Monolayer Assemblies of Chained Nanoparticles, Advanced Materials Interfaces, Volume 8 (2021) no. 2 | DOI:10.1002/admi.202000681
  • Elora Védie; Hugues Brisset; Jean‐François Briand; Christine Bressy Bioinspiration and Microtopography As Nontoxic Strategies for Marine Bioadhesion Control, Advanced Materials Interfaces, Volume 8 (2021) no. 20 | DOI:10.1002/admi.202100994
  • Hamid Daneshmand; Amjad Sazgar; Masoud Araghchi Fabrication of robust and versatile superhydrophobic coating by two-step spray method: An experimental and molecular dynamics simulation study, Applied Surface Science, Volume 567 (2021), p. 150825 | DOI:10.1016/j.apsusc.2021.150825
  • Andrei Honciuc Surfaces and interfaces, Chemistry of Functional Materials Surfaces and Interfaces (2021), p. 9 | DOI:10.1016/b978-0-12-821059-8.00009-0
  • P.B. Kreider; A. Cardew-Hall; S. Sommacal; A. Chadwick; S. Hümbert; S. Nowotny; D. Nisbet; A. Tricoli; P. Compston The effect of a superhydrophobic coating on moisture absorption and tensile strength of 3D-printed carbon-fibre/polyamide, Composites Part A: Applied Science and Manufacturing, Volume 145 (2021), p. 106380 | DOI:10.1016/j.compositesa.2021.106380
  • Liyang Huang; Yin Yao; Zhilong Peng; Bo Zhang; Shaohua Chen One-level microstructure-arrayed hydrophobic surface with low surface adhesion and strong anti-wetting function, Journal of Physics: Condensed Matter, Volume 33 (2021) no. 50, p. 505002 | DOI:10.1088/1361-648x/ac2929
  • Shannon Q. Fernandes; Chandra Mouli R. Madhuranthakam Molecular Dynamics Simulation of a Superhydrophobic Cellulose Derivative Targeted for Eco‐Friendly Packaging Material, Macromolecular Theory and Simulations, Volume 30 (2021) no. 1 | DOI:10.1002/mats.202000056
  • Ashis Tripathy; Md Julker Nine; Dusan Losic; Filipe Samuel Silva Nature inspired emerging sensing technology: Recent progress and perspectives, Materials Science and Engineering: R: Reports, Volume 146 (2021), p. 100647 | DOI:10.1016/j.mser.2021.100647
  • Yinghan Chan; Xun Hui Wu; Buong Woei Chieng; Nor Azowa Ibrahim; Yoon Yee Then Superhydrophobic Nanocoatings as Intervention against Biofilm-Associated Bacterial Infections, Nanomaterials, Volume 11 (2021) no. 4, p. 1046 | DOI:10.3390/nano11041046
  • Fan Fan; Feng-Xia Li; Shou-Ceng Tian; Mao Sheng; Waleed Khan; Ai-Ping Shi; Yang Zhou; Quan Xu Hydrophobic epoxy resin coated proppants with ultra-high self-suspension ability and enhanced liquid conductivity, Petroleum Science, Volume 18 (2021) no. 6, p. 1753 | DOI:10.1016/j.petsci.2021.09.004
  • Mohamed A. Samaha; Mohamed Gad-el-Hak Slippery surfaces: A decade of progress, Physics of Fluids, Volume 33 (2021) no. 7 | DOI:10.1063/5.0056967
  • Glenda Q. Ramos; Ítalo C. da Costa; Marcelo E. H. Maia da Costa; Erveton P. Pinto; Robert S. Matos; Henrique D. da Fonseca Filho Stereometric analysis of Amazon rainforest Anacardium occidentale L. leaves, Planta, Volume 253 (2021) no. 1 | DOI:10.1007/s00425-020-03529-5
  • Philip Brown; Prantik Mazumder Current Progress in Mechanically Durable Water‐Repellent Surfaces: A Critical Review, Progress in Adhesion and Adhesives (2021), p. 709 | DOI:10.1002/9781119846703.ch16
  • Qinghua Wang; Huixin Wang; Zhixian Zhu; Nan Xiang; Zhandong Wang; Guifang Sun Switchable wettability control of titanium via facile nanosecond laser-based surface texturing, Surfaces and Interfaces, Volume 24 (2021), p. 101122 | DOI:10.1016/j.surfin.2021.101122
  • Avik Samanta; Wuji Huang; Hassan Chaudhry; Qinghua Wang; Scott K. Shaw; Hongtao Ding Design of Chemical Surface Treatment for Laser-Textured Metal Alloys to Achieve Extreme Wetting Behavior, ACS Applied Materials Interfaces, Volume 12 (2020) no. 15, p. 18032 | DOI:10.1021/acsami.9b21438
  • Changhoon Lee; Gi Wook Lee; Wansuk Choi; Cheol Hun Yoo; Byoungjin Chun; Jong Suk Lee; Jung-Hyun Lee; Hyun Wook Jung Pattern flow dynamics over rectangular Sharklet patterned membrane surfaces, Applied Surface Science, Volume 514 (2020), p. 145961 | DOI:10.1016/j.apsusc.2020.145961
  • Julien R. Landel; François J. Peaudecerf; Fernando Temprano-Coleto; Frédéric Gibou; Raymond E. Goldstein; Paolo Luzzatto-Fegiz A theory for the slip and drag of superhydrophobic surfaces with surfactant, Journal of Fluid Mechanics, Volume 883 (2020) | DOI:10.1017/jfm.2019.857
  • Avik Samanta; Qinghua Wang; Scott K. Shaw; Hongtao Ding Roles of chemistry modification for laser textured metal alloys to achieve extreme surface wetting behaviors, Materials Design, Volume 192 (2020), p. 108744 | DOI:10.1016/j.matdes.2020.108744
  • Sagi Orazbayev; Maratbek Gabdullin; Tlekkabul Ramazanov; Zhunisbekov Askar; Zhumadilov Rakhymzhan Obtaining hydrophobic surfaces in atmospheric pressure plasma, Materials Today: Proceedings, Volume 20 (2020), p. 335 | DOI:10.1016/j.matpr.2019.10.071
  • Ukolov Aleksei Ivanovich; Popova Tatiana Nickolayevna; Kulish Andrey Viktorovich The effect of the loss of superhydrophobic surface properties on biofouling and flow around shipbuilding's steel plates, Ocean Engineering, Volume 214 (2020), p. 107801 | DOI:10.1016/j.oceaneng.2020.107801
  • Hongyuan Li; SongSong Ji; Xiangkui Tan; Zexiang Li; Yaolei Xiang; Pengyu Lv; Huiling Duan Effect of Reynolds number on drag reduction in turbulent boundary layer flow over liquid–gas interface, Physics of Fluids, Volume 32 (2020) no. 12 | DOI:10.1063/5.0027727
  • M. Kliuev; M. Wiessner; H. Büttner; U. Maradia; K. Wegener Super-hydrophobic and Super-hydrophilic Effect by Means of EDM Surface Structuring of γ-TiAl, Procedia CIRP, Volume 95 (2020), p. 393 | DOI:10.1016/j.procir.2020.02.332
  • Mohammad Liravi; Hossein Pakzad; Ali Moosavi; Ali Nouri-Borujerdi A comprehensive review on recent advances in superhydrophobic surfaces and their applications for drag reduction, Progress in Organic Coatings, Volume 140 (2020), p. 105537 | DOI:10.1016/j.porgcoat.2019.105537
  • Mitsugu Hasegawa; Hirotaka Sakaue Microfiber coating for flow control: Effects on microfiber length in orientation control, Sensors and Actuators A: Physical, Volume 312 (2020), p. 112125 | DOI:10.1016/j.sna.2020.112125
  • Daniel Gandyra; Stefan Walheim; Stanislav Gorb; Petra Ditsche; Wilhelm Barthlott; Thomas Schimmel Air Retention under Water by the Floating Fern Salvinia: The Crucial Role of a Trapped Air Layer as a Pneumatic Spring, Small, Volume 16 (2020) no. 42 | DOI:10.1002/smll.202003425
  • Colin R. Crick Approaches for Evaluating and Engineering Resilient Superhydrophobic Materials, Superhydrophobic Surfaces - Fabrications to Practical Applications (2020) | DOI:10.5772/intechopen.80746
  • Sara Naderizadeh; José Alejandro Heredia‐Guerrero; Gianvito Caputo; Silvia Grasselli; Annalisa Malchiodi; Athanassia Athanassiou; Ilker S. Bayer Superhydrophobic Coatings from Beeswax‐in‐Water Emulsions with Latent Heat Storage Capability, Advanced Materials Interfaces, Volume 6 (2019) no. 5 | DOI:10.1002/admi.201801782
  • László Mérai; Norbert Varga; Ágota Deák; Dániel Sebők; Imre Szenti; Ákos Kukovecz; Zoltán Kónya; Imre Dékány; László Janovák Preparation of photocatalytic thin films with composition dependent wetting properties and self-healing ability, Catalysis Today, Volume 328 (2019), p. 85 | DOI:10.1016/j.cattod.2018.10.015
  • Anita Panda; A.R. Pati; B. Saha; A. Kumar; S.S. Mohapatra The role of viscous and capillary forces in the prediction of critical conditions defining super-hydrophobic and hydrophilic characteristics, Chemical Engineering Science, Volume 207 (2019), p. 527 | DOI:10.1016/j.ces.2019.06.013
  • Shenglin Huang; Pengyu Lv; Huiling Duan Morphology evolution of liquid–gas interface on submerged solid structured surfaces, Extreme Mechanics Letters, Volume 27 (2019), p. 34 | DOI:10.1016/j.eml.2019.01.005
  • Lebea N Nthunya; Leonardo Gutierrez; Sebastiaan Derese; Edward N Nxumalo; Arne R Verliefde; Bhekie B Mamba; Sabelo D Mhlanga A review of nanoparticle‐enhanced membrane distillation membranes: membrane synthesis and applications in water treatment, Journal of Chemical Technology Biotechnology, Volume 94 (2019) no. 9, p. 2757 | DOI:10.1002/jctb.5977
  • Zhe Li; Jennifer Marlena; Dicky Pranantyo; Ba Loc Nguyen; Choon Hwai Yap A porous superhydrophobic surface with active air plastron control for drag reduction and fluid impalement resistance, Journal of Materials Chemistry A, Volume 7 (2019) no. 27, p. 16387 | DOI:10.1039/c9ta02745a
  • А.И. УКОЛОВ; Т.Н. ПОПОВА; А.В. КУЛИШ ИССЛЕДОВАНИЕ БИООБРАСТАНИЯ ПОЛИРОВАННОЙ И СУПЕРГИДРОФОБНОЙ ПОВЕРХНОСТЕЙ СТАЛИ МАРКИ A40S В УСЛОВИЯХ КЕРЧЕНСКОГО ПРОЛИВА, "НАУКА ЮГА РОССИИ", Science in the South of Russia (2019) no. 2, p. 10 | DOI:10.7868/s25000640190202
  • Mohammad Sayem Mozumder; Abdel-Hamid I. Mourad; Hifsa Pervez; Riham Surkatti Recent developments in multifunctional coatings for solar panel applications: A review, Solar Energy Materials and Solar Cells, Volume 189 (2019), p. 75 | DOI:10.1016/j.solmat.2018.09.015
  • Wei Xu; Karthikeyan Rajan; X. Grant Chen; D.K. Sarkar Facile electrodeposition of superhydrophobic aluminum stearate thin films on copper substrates for active corrosion protection, Surface and Coatings Technology, Volume 364 (2019), p. 406 | DOI:10.1016/j.surfcoat.2019.02.070
  • Huynh H. Nguyen; Shanhong Wan; Kiet A. Tieu; Hongtao Zhu; Sang T. Pham Rendering hydrophilic glass-ceramic enamel surfaces hydrophobic by acid etching and surface silanization for heat transfer applications, Surface and Coatings Technology, Volume 370 (2019), p. 82 | DOI:10.1016/j.surfcoat.2019.04.062
  • Tamal Barman; Hao Chen; Junpeng Liu; Guang Yang; Wenjie Zhao; Chuang Peng; Xianghui Hou Synthesis and characterization of styrene-based polyfluoroacrylate film for hydrophobic/icephobic applications, Thin Solid Films, Volume 687 (2019), p. 137462 | DOI:10.1016/j.tsf.2019.137462
  • Wenjing Li; Jingjing Zhang; Zhongxin Xue; Jingming Wang; Lei Jiang Spontaneous and Directional Bubble Transport on Porous Copper Wires with Complex Shapes in Aqueous Media, ACS Applied Materials Interfaces, Volume 10 (2018) no. 3, p. 3076 | DOI:10.1021/acsami.7b15681
  • Hui Liu; Yandong Wang; Jianying Huang; Zhong Chen; Guoqiang Chen; Yuekun Lai Bioinspired Surfaces with Superamphiphobic Properties: Concepts, Synthesis, and Applications, Advanced Functional Materials, Volume 28 (2018) no. 19 | DOI:10.1002/adfm.201707415
  • Jiaqiang E; Yu Jin; Yuanwang Deng; Wei Zuo; Xiaohuan Zhao; Dandan Han; Qingguo Peng; Zhiqing Zhang Wetting Models and Working Mechanisms of Typical Surfaces Existing in Nature and Their Application on Superhydrophobic Surfaces: A Review, Advanced Materials Interfaces, Volume 5 (2018) no. 1 | DOI:10.1002/admi.201701052
  • Panagiotis Dimitrakellis; Evangelos Gogolides Hydrophobic and superhydrophobic surfaces fabricated using atmospheric pressure cold plasma technology: A review, Advances in Colloid and Interface Science, Volume 254 (2018), p. 1 | DOI:10.1016/j.cis.2018.03.009
  • Anton Starostin; Viktor Valtsifer; Zahava Barkay; Irina Legchenkova; Viktor Danchuk; Edward Bormashenko Drop-wise and film-wise water condensation processes occurring on metallic micro-scaled surfaces, Applied Surface Science, Volume 444 (2018), p. 604 | DOI:10.1016/j.apsusc.2018.03.065
  • Dimitra Aslanidou; Ioannis Karapanagiotis Superhydrophobic, Superoleophobic and Antimicrobial Coatings for the Protection of Silk Textiles, Coatings, Volume 8 (2018) no. 3, p. 101 | DOI:10.3390/coatings8030101
  • Mark Frenkel; Viktor Danchuk; Victor Multanen; Edward Bormashenko Magnetic Field Inspired Contact Angle Hysteresis Drives Floating Polyolefin Rafts, Colloid and Interface Science Communications, Volume 22 (2018), p. 38 | DOI:10.1016/j.colcom.2017.12.002
  • Liuming Yang; Yang Yu; Guoxiang Hou; Kai Wang; Yeping Xiong Boundary conditions with adjustable slip length for the lattice Boltzmann simulation of liquid flow, Computers Fluids, Volume 174 (2018), p. 200 | DOI:10.1016/j.compfluid.2018.08.002
  • Wagih Abu Rowin; Jianfeng Hou; Sina Ghaemi Turbulent channel flow over riblets with superhydrophobic coating, Experimental Thermal and Fluid Science, Volume 94 (2018), p. 192 | DOI:10.1016/j.expthermflusci.2018.02.001
  • Changqing Fang; Mengyuan Pu; Xing Zhou; Wanqing Lei; Lu Pei; Chenxi Wang Facile Preparation of Hydrophobic Aluminum Oxide Film via Sol-Gel Method, Frontiers in Chemistry, Volume 6 (2018) | DOI:10.3389/fchem.2018.00308
  • Changqing Fang; Mengyuan Pu; Xing Zhou; Rong Yang; Wanqing Lei; Chenxi Wang Various nanoparticle morphologies and wettability properties of aluminum oxide films controlled by water content during the hydrothermal reaction, Journal of Alloys and Compounds, Volume 749 (2018), p. 180 | DOI:10.1016/j.jallcom.2018.03.276
  • S. H. Yousefi; D. G. Venkateshan; C. Tang; H. Vahedi Tafreshi; B. Pourdeyhimi Effects of electrospinning conditions on microstructural properties of polystyrene fibrous materials, Journal of Applied Physics, Volume 124 (2018) no. 23 | DOI:10.1063/1.5049128
  • Jeya Jeevahan; M. Chandrasekaran; G. Britto Joseph; R. B. Durairaj; G. Mageshwaran Superhydrophobic surfaces: a review on fundamentals, applications, and challenges, Journal of Coatings Technology and Research, Volume 15 (2018) no. 2, p. 231 | DOI:10.1007/s11998-017-0011-x
  • Marco Castagna; Nicolas Mazellier; Azeddine Kourta Wake of super-hydrophobic falling spheres: influence of the air layer deformation, Journal of Fluid Mechanics, Volume 850 (2018), p. 646 | DOI:10.1017/jfm.2018.480
  • Haihong Gu; Qiong Zhang; Jiatai Gu; Ni Li; Jie Xiong Facile preparation of superhydrophobic silica nanoparticles by hydrothermal-assisted sol–gel process and effects of hydrothermal time on surface modification, Journal of Sol-Gel Science and Technology, Volume 87 (2018) no. 2, p. 478 | DOI:10.1007/s10971-018-4731-x
  • Ke Sun; Huan Yang; Wei Xue; Menghui Cao; Kenneth Adeyemi; Yu Cao Tunable Bubble Assembling on a Hybrid Superhydrophobic–Superhydrophilic Surface Fabricated by Selective Laser Texturing, Langmuir, Volume 34 (2018) no. 44, p. 13203 | DOI:10.1021/acs.langmuir.8b02879
  • S Tripathi; Rajnarayan De; S Maidul Haque; K Divakar Rao; J S Misal; C Prathap; S C Das; Manju M Patidar; V Ganesan; N K Sahoo Annealing dependent evolution of columnar nanostructures in RF magnetron sputtered PTFE films for hydrophobic applications, Materials Research Express, Volume 5 (2018) no. 1, p. 015312 | DOI:10.1088/2053-1591/aaa5f3
  • Chunbao Liu; Ling Zhu; Weiyang Bu; Yunhong Liang Superhydrophobic surfaces: From nature to biomimetic through VOF simulation, Micron, Volume 107 (2018), p. 94 | DOI:10.1016/j.micron.2018.01.013
  • C. C. Mei; X. Y. Guo Numerical study of laminar boundary-layer flows over a superhydrophobic plate, Physics of Fluids, Volume 30 (2018) no. 7 | DOI:10.1063/1.5039605
  • Humberto Bocanegra Evans; Ali M. Hamed; Serdar Gorumlu; Ali Doosttalab; Burak Aksak; Leonardo P. Chamorro; Luciano Castillo Engineered bio-inspired coating for passive flow control, Proceedings of the National Academy of Sciences, Volume 115 (2018) no. 6, p. 1210 | DOI:10.1073/pnas.1715567115
  • Liyan Wu; Zhibin Jiao; Yuqiu Song; Cuihong Liu; Huan Wang; Yuying Yan Experimental investigations on drag-reduction characteristics of bionic surface with water-trapping microstructures of fish scales, Scientific Reports, Volume 8 (2018) no. 1 | DOI:10.1038/s41598-018-30490-x
  • HyoJu Kim; Hyun Sik Yoon Effect of the orientation of the harbor seal vibrissa based biomimetic cylinder on hydrodynamic forces and vortex induced frequency, AIP Advances, Volume 7 (2017) no. 10 | DOI:10.1063/1.5008658
  • Jijo Easo George; Santhosh Chidangil; Sajan Daniel George Recent Progress in Fabricating Superaerophobic and Superaerophilic Surfaces, Advanced Materials Interfaces, Volume 4 (2017) no. 9 | DOI:10.1002/admi.201601088
  • Nika Gholamzadeh; Majid Peyravi; Mohsen Jahanshahi; Hamzeh Hoseinpour; Ali Shokuhi Rad Developing PES membrane by modified Co3O4–OA nanoparticles for direct contact membrane distillation process, Asia-Pacific Journal of Chemical Engineering, Volume 12 (2017) no. 4, p. 582 | DOI:10.1002/apj.2100
  • Chandantaru Dey Modak; Soubhik Kumar Bhaumik Creeping flow dynamics over superhydrophobic ball: Slip effects and drag reduction, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 529 (2017), p. 998 | DOI:10.1016/j.colsurfa.2017.07.019
  • Roberto Scaffaro; Francesco Lopresti; Alberto Sutera; Luigi Botta; Rosa Maria Fontana; Giuseppe Gallo Plasma modified PLA electrospun membranes for actinorhodin production intensification in Streptomyces coelicolor immobilized-cell cultivations, Colloids and Surfaces B: Biointerfaces, Volume 157 (2017), p. 233 | DOI:10.1016/j.colsurfb.2017.05.060
  • Jihong Yan; Kai Yang; Xinbin Zhang; Jie Zhao Analysis of impact phenomenon on superhydrophobic surfaces based on molecular dynamics simulation, Computational Materials Science, Volume 134 (2017), p. 8 | DOI:10.1016/j.commatsci.2017.03.013
  • Uroš Trdan; Matej Hočevar; Peter Gregorčič Transition from superhydrophilic to superhydrophobic state of laser textured stainless steel surface and its effect on corrosion resistance, Corrosion Science, Volume 123 (2017), p. 21 | DOI:10.1016/j.corsci.2017.04.005
  • A A Markov The Model of Masstransfer Intensification in Channels Using Nanowiresets inside and Nanostructures on the Wall, Journal of Physics: Conference Series, Volume 815 (2017), p. 012013 | DOI:10.1088/1742-6596/815/1/012013
  • Parvez Alam Design considerations in the development of wound healing bionanomaterials, Nanostructures for Novel Therapy (2017), p. 343 | DOI:10.1016/b978-0-323-46142-9.00013-x
  • François J. Peaudecerf; Julien R. Landel; Raymond E. Goldstein; Paolo Luzzatto-Fegiz Traces of surfactants can severely limit the drag reduction of superhydrophobic surfaces, Proceedings of the National Academy of Sciences, Volume 114 (2017) no. 28, p. 7254 | DOI:10.1073/pnas.1702469114
  • Tamoghna Saha; Shashi Kumar; Soubhik Kumar Bhaumik Slip-enhanced flow through thin packed column with superhydrophobic wall, Sensors and Actuators B: Chemical, Volume 240 (2017), p. 468 | DOI:10.1016/j.snb.2016.09.012
  • Khurshid Ahmad; Xuezeng Zhao; Yunlu Pan Effect of surface morphology on measurement and interpretation of boundary slip on superhydrophobic surfaces, Surface and Interface Analysis, Volume 49 (2017) no. 7, p. 594 | DOI:10.1002/sia.6197
  • K. M. Tanvir Ahmmed; Julian Montagut; Anne‐Marie Kietzig Drag on superhydrophobic sharkskin inspired surface in a closed channel turbulent flow, The Canadian Journal of Chemical Engineering, Volume 95 (2017) no. 10, p. 1934 | DOI:10.1002/cjce.22850
  • Yahui Xue; Pengyu Lv; Hao Lin; Huiling Duan Underwater Superhydrophobicity: Stability, Design and Regulation, and Applications, Applied Mechanics Reviews, Volume 68 (2016) no. 3 | DOI:10.1115/1.4033706
  • S. Tripathi; S. Maidul Haque; K. Divakar Rao; Rajnarayan De; T. Shripathi; U. Deshpande; V. Ganesan; N.K. Sahoo Investigation of optical and microstructural properties of RF magnetron sputtered PTFE films for hydrophobic applications, Applied Surface Science, Volume 385 (2016), p. 289 | DOI:10.1016/j.apsusc.2016.05.121
  • Alexander Kockmann; Jutta Hesselbach; Carsten Schilde; Arno Kwade; Georg Garnweitner Verbesserung von Kunstharzbeschichtungen durch Nanopartikel mit maßgeschneiderter Oberflächenmodifizierung, Chemie Ingenieur Technik, Volume 88 (2016) no. 7, p. 958 | DOI:10.1002/cite.201500171
  • Dimitra Aslanidou; Ioannis Karapanagiotis; Costas Panayiotou Tuning the wetting properties of siloxane-nanoparticle coatings to induce superhydrophobicity and superoleophobicity for stone protection, Materials Design, Volume 108 (2016), p. 736 | DOI:10.1016/j.matdes.2016.07.014
  • Yun‐Hong Liang; Jian Peng; Xiu‐Juan Li; Jin‐Kai Xu; Zhi‐Hui Zhang; Lu‐Quan Ren From natural to biomimetic: The superhydrophobicity and the contact time, Microscopy Research and Technique, Volume 79 (2016) no. 8, p. 712 | DOI:10.1002/jemt.22689
  • Dandan Lv; Hongfei Shao; Xiang Gao; Ke Lu; Haifeng Lu; Houyi Ma Fabrication and corrosion resistance properties of super-hydrophobic coatings on iron and steel substrates by creating micro-/nano-structures and modifying rough surfaces, RSC Advances, Volume 6 (2016) no. 96, p. 93419 | DOI:10.1039/c6ra17655k
  • A. KIRVESLAHTI; K. MIELONEN; K. IKONEN; W. CUI; M. SUVANTO; T. A. PAKKANEN UNDERWATER SLIDING PROPERTIES: EFFECT OF SLIDER SHAPE AND SURFACE WETTABILITY, Surface Review and Letters, Volume 23 (2016) no. 05, p. 1650042 | DOI:10.1142/s0218625x16500426
  • Ahmad Esmaeilirad; Maxym V. Rukosuyev; Martin B.G. Jun; Frank C.J.M. van Veggel A cost-effective method to create physically and thermally stable and storable super-hydrophobic aluminum alloy surfaces, Surface and Coatings Technology, Volume 285 (2016), p. 227 | DOI:10.1016/j.surfcoat.2015.11.023
  • Lili Wang; Haoyu Li; Jinlong Song; Yuwen Sun Fast fabrication of superhydrophobic surfaces on Ti–6Al–4V substrates by deposition of lead, Surface and Coatings Technology, Volume 302 (2016), p. 507 | DOI:10.1016/j.surfcoat.2016.06.057
  • Jihong Yan; Kai Yang; Tao Wang; Jie Zhao, 2015 IEEE International Conference on Information and Automation (2015), p. 353 | DOI:10.1109/icinfa.2015.7279312
  • Rui Ma; Jingming Wang; Zhongjia Yang; Meng Liu; Jingjing Zhang; Lei Jiang Bioinspired Gas Bubble Spontaneous and Directional Transportation Effects in an Aqueous Medium, Advanced Materials, Volume 27 (2015) no. 14, p. 2384 | DOI:10.1002/adma.201405087
  • Michele Ferrari; Alessandro Benedetti Superhydrophobic surfaces for applications in seawater, Advances in Colloid and Interface Science, Volume 222 (2015), p. 291 | DOI:10.1016/j.cis.2015.01.005
  • Shengsheng Yang; Ri Qiu; Hongqing Song; Peng Wang; Zhiqiang Shi; Yanfang Wang Slippery liquid-infused porous surface based on perfluorinated lubricant/iron tetradecanoate: Preparation and corrosion protection application, Applied Surface Science, Volume 328 (2015), p. 491 | DOI:10.1016/j.apsusc.2014.12.067
  • Alexandre M. Emelyanenko; Farida M. Shagieva; Alexandr G. Domantovsky; Ludmila B. Boinovich Nanosecond laser micro- and nanotexturing for the design of a superhydrophobic coating robust against long-term contact with water, cavitation, and abrasion, Applied Surface Science, Volume 332 (2015), p. 513 | DOI:10.1016/j.apsusc.2015.01.202
  • Haibin Wang; Eryu Chen; Xianbu Jia; Lijun Liang; Qi Wang Superhydrophobic coatings fabricated with polytetrafluoroethylene and SiO2 nanoparticles by spraying process on carbon steel surfaces, Applied Surface Science, Volume 349 (2015), p. 724 | DOI:10.1016/j.apsusc.2015.05.068
  • Daniel Gandyra; Stefan Walheim; Stanislav Gorb; Wilhelm Barthlott; Thomas Schimmel The capillary adhesion technique: a versatile method for determining the liquid adhesion force and sample stiffness, Beilstein Journal of Nanotechnology, Volume 6 (2015), p. 11 | DOI:10.3762/bjnano.6.2
  • Z.R. Zhou; Z.M. Jin Biotribology: Recent progresses and future perspectives, Biosurface and Biotribology, Volume 1 (2015) no. 1, p. 3 | DOI:10.1016/j.bsbt.2015.03.001
  • Deli Zang; Feng Liu; Ming Zhang; Xiaogang Niu; Zhengxin Gao; Chengyu Wang Superhydrophobic coating on fiberglass cloth for selective removal of oil from water, Chemical Engineering Journal, Volume 262 (2015), p. 210 | DOI:10.1016/j.cej.2014.09.082
  • Zhijia Yu; Xinghua Liu; Guozhu Kuang Water slip flow in superhydrophobic microtubes within laminar flow region, Chinese Journal of Chemical Engineering, Volume 23 (2015) no. 5, p. 763 | DOI:10.1016/j.cjche.2014.12.010
  • M.M. Amrei; H. Vahedi Tafreshi Effects of hydrostatic pressure on wetted area of submerged superhydrophobic granular coatings. Part 1: mono-dispersed coatings, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 465 (2015), p. 87 | DOI:10.1016/j.colsurfa.2014.10.032
  • R. L. Zhang; J. S. Zhang; L. H. Zhao; Y. L. Sun Sizing agent on the carbon fibers surface and interface properties of its composites, Fibers and Polymers, Volume 16 (2015) no. 3, p. 657 | DOI:10.1007/s12221-015-0657-x
  • Ting Jiang; Zhiguang Guo; Weimin Liu Biomimetic superoleophobic surfaces: focusing on their fabrication and applications, Journal of Materials Chemistry A, Volume 3 (2015) no. 5, p. 1811 | DOI:10.1039/c4ta05582a
  • Anvesh Gaddam; Amit Agrawal; Suhas S. Joshi; M. C. Thompson Utilization of Cavity Vortex To Delay the Wetting Transition in One-Dimensional Structured Microchannels, Langmuir, Volume 31 (2015) no. 49, p. 13373 | DOI:10.1021/acs.langmuir.5b03666
  • D. Dilip; M. S. Bobji; Raghuraman N. Govardhan Effect of absolute pressure on flow through a textured hydrophobic microchannel, Microfluidics and Nanofluidics, Volume 19 (2015) no. 6, p. 1409 | DOI:10.1007/s10404-015-1655-4
  • Nayoung Kim; Hyunseok Kim; Hyungmin Park An experimental study on the effects of rough hydrophobic surfaces on the flow around a circular cylinder, Physics of Fluids, Volume 27 (2015) no. 8 | DOI:10.1063/1.4929545
  • G. F. Zuo; J. Xu; P. Y. Li; L. L. Zhang; D. D. Xing; Y. Z. Meng; X. M. Wang; Y. Shen Characterisation of lotus-leaf-like superhydrophobic fluorinated polysiloxane coating prepared with gradient coating technology, Plastics, Rubber and Composites, Volume 44 (2015) no. 2, p. 63 | DOI:10.1179/1743289814y.0000000118
  • Daniela G Coblas; Aurelian Fatu; Abdelghani Maoui; Mohamed Hajjam Manufacturing textured surfaces: State of art and recent developments, Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, Volume 229 (2015) no. 1, p. 3 | DOI:10.1177/1350650114542242
  • Pavani P. Nadiminti; James E. Rookes; Ben J. Boyd; David M. Cahill Confocal laser scanning microscopy elucidation of the micromorphology of the leaf cuticle and analysis of its chemical composition, Protoplasma, Volume 252 (2015) no. 6, p. 1475 | DOI:10.1007/s00709-015-0777-6
  • Fan Bai; Juntao Wu; Guangming Gong; Lin Guo Biomimetic “Water Strider Leg” with Highly Refined Nanogroove Structure and Remarkable Water-Repellent Performance, ACS Applied Materials Interfaces, Volume 6 (2014) no. 18, p. 16237 | DOI:10.1021/am5044054
  • Rui Weng; Haifeng Zhang; Xiaowei Liu Spray-coating process in preparing PTFE-PPS composite super-hydrophobic coating, AIP Advances, Volume 4 (2014) no. 3 | DOI:10.1063/1.4868377
  • Zhiqing Yuan; Xian Wang; Jiping Bin; Menglei Wang; Chaoyi Peng; Suli Xing; Jiayu Xiao; Jingcheng Zeng; Hong Chen Controllable fabrication of lotus-leaf-like superhydrophobic surface on copper foil by self-assembly, Applied Physics A, Volume 116 (2014) no. 4, p. 1613 | DOI:10.1007/s00339-014-8472-6
  • Maxym V. Rukosuyev; Jason Lee; Seong Jin Cho; Geunbae Lim; Martin B.G. Jun One-step fabrication of superhydrophobic hierarchical structures by femtosecond laser ablation, Applied Surface Science, Volume 313 (2014), p. 411 | DOI:10.1016/j.apsusc.2014.05.224
  • Gregory S. Watson; Marty Gellender; Jolanta A. Watson Self-propulsion of dew drops on lotus leaves: a potential mechanism for self cleaning, Biofouling, Volume 30 (2014) no. 4, p. 427 | DOI:10.1080/08927014.2014.880885
  • D. Dilip; Narsing K. Jha; Raghuraman N. Govardhan; M.S. Bobji Controlling air solubility to maintain “Cassie” state for sustained drag reduction, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 459 (2014), p. 217 | DOI:10.1016/j.colsurfa.2014.07.006
  • F. Pacheco-Torgal; J.A. Labrincha Biotechnologies and bioinspired materials for the construction industry: an overview, International Journal of Sustainable Engineering, Volume 7 (2014) no. 3, p. 235 | DOI:10.1080/19397038.2013.844741
  • Hyungmin Park; Guangyi Sun; Chang-Jin “CJ” Kim Superhydrophobic turbulent drag reduction as a function of surface grating parameters, Journal of Fluid Mechanics, Volume 747 (2014), p. 722 | DOI:10.1017/jfm.2014.151
  • Justin E. Rodriguez; Ann M. Anderson; Mary K. Carroll Hydrophobicity and drag reduction properties of surfaces coated with silica aerogels and xerogels, Journal of Sol-Gel Science and Technology, Volume 71 (2014) no. 3, p. 490 | DOI:10.1007/s10971-014-3388-3
  • Gabriela Ramos Chagas; Daniel Eduardo Weibel Development of Poly(propylene) Superhydrophobic Surfaces by Functionalised TiO2 Nanoparticles: Effect of Solvents and Dipping Times, Macromolecular Symposia, Volume 344 (2014) no. 1, p. 55 | DOI:10.1002/masy.201300218
  • Soo-Jung Son; Young-Sang Cho; Jong-Joo Rha; Chul-Jin Choi Fabrication of metal electrodes on flexible substrates by controlled deposition of conductive nano-ink, Materials Letters, Volume 117 (2014), p. 179 | DOI:10.1016/j.matlet.2013.05.094
  • Vijay Kumar; N. N. Sharma A Study on Hydrophobicity of Silicon and a Few Dielectric Materials, Micro and Smart Devices and Systems (2014), p. 265 | DOI:10.1007/978-81-322-1913-2_16
  • Thomas Neesse Selective attachment processes in ancient gold ore beneficiation, Minerals Engineering, Volume 58 (2014), p. 52 | DOI:10.1016/j.mineng.2014.01.009
  • Mohamed Samaha; Mohamed Gad-el-Hak Polymeric Slippery Coatings: Nature and Applications, Polymers, Volume 6 (2014) no. 5, p. 1266 | DOI:10.3390/polym6051266
  • Wei-Yang Sun; Chang-Jin C J Kim, 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS) (2013), p. 397 | DOI:10.1109/memsys.2013.6474262
  • Yanpeng Wu; Chaoying Zhang Analysis of anti-condensation mechanism on superhydrophobic anodic aluminum oxide surface, Applied Thermal Engineering, Volume 58 (2013) no. 1-2, p. 664 | DOI:10.1016/j.applthermaleng.2013.01.048
  • Christina Barth; Mohamed Samaha; Hooman Tafreshi; Mohamed Gad-el-Hak Convective Mass Transfer From Submerged Superhydrophobic Surfaces, International Journal of Flow Control, Volume 5 (2013) no. 2, p. 79 | DOI:10.1260/1756-8250.5.2.79
  • Christina Barth; Mohamed Samaha; Hooman Tafreshi; Mohamed Gad-el-Hak Convective Mass Transfer From Submerged Superhydrophobic Surfaces: Turbulent Flow, International Journal of Flow Control, Volume 5 (2013) no. 3-4, p. 143 | DOI:10.1260/1756-8250.5.3-4.143
  • Jie Yang; Wen Li Preparation of superhydrophobic surfaces on Al substrates and the anti-icing behavior, Journal of Alloys and Compounds, Volume 576 (2013), p. 215 | DOI:10.1016/j.jallcom.2013.04.060
  • Mohamed A. Samaha; Hooman Vahedi Tafreshi; Mohamed Gad-el-Hak Novel method to characterize superhydrophobic coatings, Journal of Colloid and Interface Science, Volume 395 (2013), p. 315 | DOI:10.1016/j.jcis.2012.12.066
  • Ivan U. Vakarelski; Derek Y. C. Chan; Jeremy O. Marston; Sigurdur T. Thoroddsen Dynamic Air Layer on Textured Superhydrophobic Surfaces, Langmuir, Volume 29 (2013) no. 35, p. 11074 | DOI:10.1021/la402306c
  • Mohamed Gad-el-Hak Comment on “Experimental study of skin friction drag reduction on superhydrophobic flat plates in high Reynolds number boundary layer flow” [Phys. Fluids 25, 025103 (2013)], Physics of Fluids, Volume 25 (2013) no. 7 | DOI:10.1063/1.4816362
  • Maximilian Lackner; Josef Peter Guggenbichler Antimicrobial Surfaces, Ullmann's Encyclopedia of Industrial Chemistry (2013), p. 1 | DOI:10.1002/14356007.q03_q01
  • Mohamed A. Samaha; Hooman Vahedi Tafreshi; Mohamed Gad-el-Hak Effects of hydrostatic pressure on the drag reduction of submerged aerogel-particle coatings, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 399 (2012), p. 62 | DOI:10.1016/j.colsurfa.2012.02.025
  • G.W. Slater; T.N. Shendruk Can slip walls improve field-flow fractionation or hydrodynamic chromatography?, Journal of Chromatography A, Volume 1256 (2012), p. 206 | DOI:10.1016/j.chroma.2012.07.027
  • Junghan Lee; Kijung Yong Surface chemistry controlled superhydrophobic stability of W18O49 nanowire arrays submerged underwater, Journal of Materials Chemistry, Volume 22 (2012) no. 38, p. 20250 | DOI:10.1039/c2jm34307j
  • Mohamed A. Samaha; Hooman Vahedi Tafreshi; Mohamed Gad-el-Hak Influence of Flow on Longevity of Superhydrophobic Coatings, Langmuir, Volume 28 (2012) no. 25, p. 9759 | DOI:10.1021/la301299e
  • Mohamed A. Samaha; Hooman Vahedi Tafreshi; Mohamed Gad-el-Hak Sustainability of superhydrophobicity under pressure, Physics of Fluids, Volume 24 (2012) no. 11 | DOI:10.1063/1.4766200
  • Haecheon Choi; Hyungmin Park; Woong Sagong; Sang-im Lee Biomimetic flow control based on morphological features of living creatures, Physics of Fluids, Volume 24 (2012) no. 12 | DOI:10.1063/1.4772063

Cité par 177 documents. Sources : Crossref

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: