In this review we discuss the current state of the art in evaluating the fabrication and performance of biomimetic superhydrophobic materials and their applications in engineering sciences. Superhydrophobicity, often referred to as the lotus effect, could be utilized to design surfaces with minimal skin-friction drag for applications such as self-cleaning and energy conservation. We start by discussing the concept of the lotus effect and continue to present a review of the recent advances in manufacturing superhydrophobic surfaces with ordered and disordered microstructures. We then present a discussion on the resistance of the air–water interface to elevated pressures—the phenomenon that enables a water strider to walk on water. We conclude the article by presenting a brief overview of the latest advancements in studying the longevity of submerged superhydrophobic surfaces for underwater applications.
Mohamed A. Samaha 1 ; Hooman Vahedi Tafreshi 1 ; Mohamed Gad-el-Hak 1
@article{CRMECA_2012__340_1-2_18_0, author = {Mohamed A. Samaha and Hooman Vahedi Tafreshi and Mohamed Gad-el-Hak}, title = {Superhydrophobic surfaces: {From} the lotus leaf to the submarine}, journal = {Comptes Rendus. M\'ecanique}, pages = {18--34}, publisher = {Elsevier}, volume = {340}, number = {1-2}, year = {2012}, doi = {10.1016/j.crme.2011.11.002}, language = {en}, }
TY - JOUR AU - Mohamed A. Samaha AU - Hooman Vahedi Tafreshi AU - Mohamed Gad-el-Hak TI - Superhydrophobic surfaces: From the lotus leaf to the submarine JO - Comptes Rendus. Mécanique PY - 2012 SP - 18 EP - 34 VL - 340 IS - 1-2 PB - Elsevier DO - 10.1016/j.crme.2011.11.002 LA - en ID - CRMECA_2012__340_1-2_18_0 ER -
Mohamed A. Samaha; Hooman Vahedi Tafreshi; Mohamed Gad-el-Hak. Superhydrophobic surfaces: From the lotus leaf to the submarine. Comptes Rendus. Mécanique, Biomimetic flow control, Volume 340 (2012) no. 1-2, pp. 18-34. doi : 10.1016/j.crme.2011.11.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2011.11.002/
[1] Characterization and distribution of water-repellent, self-cleaning plant surfaces, Ann. Bot., Volume 79 (1997), pp. 667-677
[2] Water-repellent legs of water striders, Nature, Volume 432 (2004), p. 36
[3] Slip on superhydrophobic surfaces, Annu. Rev. Fluid Mech., Volume 42 (2010), pp. 89-109
[4] Maximizing the giant slip on superhydrophobic microstructures by nanostructuring their sidewalls, Langmuir, Volume 25 (2009), pp. 12812-12818
[5] Simulation of meniscus stability in superhydrophobic granular surfaces under hydrostatic pressures, Colloids Surf. A, Volume 385 (2011), pp. 95-103
[6] Preparation and physical properties of superhydrophobic papers, J. Colloid Interface Sci., Volume 325 (2008), pp. 588-593
[7] Super hydrophobic silica aerogel powders with simultaneous surface modification, solvent exchange and sodium ion removal from hydrogels, Microporous Mesoporous Mater., Volume 112 (2008), pp. 504-509
[8] Superhydrophobic fabrics produced by electrospinning and chemical vapor deposition, Macromolecules, Volume 38 (2005), pp. 9742-9748
[9] Poly[bis(2,2,2-trifluoroethoxy)phosphazene] superhydrophobic nanofibers, Langmuir, Volume 21 (2005), pp. 11604-11607
[10] Superhydrophobic surface directly created by electrospinning based on hydrophilic material, J. Mater. Sci., Volume 41 (2006), pp. 3793-3797
[11] Fabrication of superhydrophobic fiber coatings by DC-biased AC-electrospinning, J. Appl. Polym. Sci., Volume 123 (2012), pp. 1112-1119
[12] Effects of micro- and nano-structures on the self-cleaning behavior of lotus leaves, Nanotechnology, Volume 17 (2006), pp. 1359-1362
[13] Fabrication of artificial Lotus leaves and significance of hierarchical structure for superhydrophobicity and low adhesion, Soft Matter, Volume 5 (2009), pp. 1386-1393
[14] http://www.flickr.com/photos/rachelyin/3203932476/
[15] http://www.hk-phy.org/atomic_world/lotus/lotus01_e.html
[16] http://www.thenakedscientists.com/HTML/articles/article/biomimeticsborrowingfrombiology/
[17] Flow Control: Passive, Active, and Reactive Flow Management, Cambridge University Press, London, United Kingdom, 2000
[18] In situ, non-invasive characterization of superhydrophobic coatings, Rev. Sci. Instrum., Volume 82 (2011), p. 045109
[19] The fluid mechanics of microdevices – The Freeman scholar lecture, J. Fluids Eng., Volume 121 (1999), pp. 5-33
[20] Microfluidics: the no-slip boundary condition (C. Tropea; A. Yarin; J. Foss, eds.), Handbook of Experimental Fluid Dynamics, Springer, New York, 2007
[21] Pearl drops, Europhys. Lett., Volume 47 (1999), pp. 220-226
[22] Microfabricated textured surfaces for super-hydrophobicity investigations, Microelectron. Eng., Volume 78–79 (2005), pp. 100-105
[23] Structured surfaces for giant liquid slip, Phys. Rev. Lett., Volume 101 (2008), p. 064501
[24] Memoire sur les lois du mouvement des fluides, Mem. Acad. R. Sci. Inst. France, Volume 6 (1823), pp. 389-440
[25] Effective slip in pressure-driven Stokes flow, J. Fluid Mech., Volume 489 (2003), pp. 55-77
[26] Laminar drag reduction in microchannels using ultrahydrophobic surfaces, Phys. Fluids, Volume 16 (2004), pp. 4635-4643
[27] Direct velocity measurements of the flow past drag-reducing ultrahydrophobic surfaces, Phys. Fluids, Volume 17 (2005), p. 103606
[28] Laminar flow in a microchannel with superhydrophobic walls exhibiting transverse ribs, Phys. Fluids, Volume 18 (2006), p. 087110
[29] Laminar flow in a microchannel with hydrophobic surface patterned microribs oriented parallel to the flow direction, Phys. Fluids, Volume 19 (2007), p. 093603
[30] Achieving large slip with superhydrophobic surfaces: Scaling laws for generic geometries, Phys. Fluids, Volume 19 (2007), p. 123601
[31] Microchannel flow with superhydrophobic surfaces: Effects of Reynolds number and pattern width to channel height ratio, Phys. Fluids, Volume 21 (2009), p. 122004
[32] Turbulent drag reduction using superhydrophobic surfaces, Phys. Fluids, Volume 21 (2009), p. 085103
[33] Direct numerical simulations of turbulent flows over superhydrophobic surfaces, J. Fluid Mech., Volume 620 (2009), pp. 31-41
[34] The friction of a mesh-like super-hydrophobic surface, Phys. Fluids, Volume 21 (2009), p. 113101
[35] Particle image velocimetry characterization of turbulent channel flow with rib patterned superhydrophobic walls, Phys. Fluids, Volume 21 (2009), p. 085106
[36] Modeling drag reduction and meniscus stability of superhydrophobic surfaces comprised of random roughness, Phys. Fluids, Volume 23 (2011), p. 012001
[37] Water slippage versus contact angle: a quasiuniversal relationship, Phys. Rev. Lett., Volume 101 (2008), p. 226101
[38] Interfacial water at hydrophobic and hydrophilic surfaces: slip, viscosity, and diffusion, Langmuir, Volume 25 (2009), pp. 10768-10781
[39] Nanofluidics, from bulk to interfaces, Chem. Soc. Rev., Volume 39 (2010), pp. 1073-1095
[40] Wetting of textured surfaces, Colloids Surf. A, Volume 206 (2002), pp. 41-46
[41] C. Henoch, T.N. Krupenkin, P. Kolodner, J.A. Taylor, M.S. Hodes, A.M. Lyons, C. Peguero, K. Breuer, Turbulent drag reduction using superhydrophobic surfaces, in: 3rd AIAA Flow Control Conference, San Francisco, California, 2006, p. 3192.
[42] Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface, Phys. Rev. Lett., Volume 96 (2006), p. 066001
[43] Biased AC electrospinning of aligned polymer nanofibers, Macromol. Rapid Commun., Volume 28 (2007), pp. 1034-1039
[44] http://commons.wikimedia.org/wiki/File:Water-strider-1.jpg
[45] Superior water repellency of water strider legs with hierarchical structures: experiments and analysis, Langmuir, Volume 23 (2007), pp. 4892-4896
[46] Walking on water: biolocomotion at the interface, Annu. Rev. Fluid Mech., Volume 38 (2006), pp. 339-369
[47] The hydrodynamics of water strider locomotion, Nature, Volume 424 (2003), pp. 663-666
[48] Water-walking devices, Exp. Fluids, Volume 43 (2007), pp. 769-778
[49] G.M. Stonedahl, J.D. Lattin, The Gerridae or water striders of Oregon and Washington (Hemiptera:Heteroptera), Technical Bulletin 144, Oregon State University, 1982, pp. 1–36.
[50] Underwater breathing: the mechanics of plastron respiration, J. Fluid Mech., Volume 608 (2008), pp. 275-296
[51] Transition between superhydrophobic states on rough surfaces, Langmuir, Volume 20 (2004), pp. 7097-7102
[52] Water wetting transition parameters of perfluorinated substrates with periodically distributed flat-top microscale obstacles, Langmuir, Volume 23 (2007), pp. 1723-1734
[53] Criteria for ultralyophobic surfaces, Langmuir, Volume 20 (2004), pp. 5013-5018
[54] Designing for optimum liquid repellency, Langmuir, Volume 22 (2006), pp. 1711-1714
[55] Effects of hydraulic pressure on the stability and transition of wetting modes of superhydrophobic surfaces, Langmuir, Volume 21 (2005), pp. 12207-12212
[56] Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, John Wiley & Sons Ltd., Chichester, UK, 2000
[57] Predicting shape and stability of air–water interface on superhydrophobic surfaces with randomly distributed, dissimilar posts, Appl. Phys. Lett., Volume 98 (2011), p. 203106
[58] T.M. Bucher, B. Emami, H.V. Tafreshi, M. Gad-el-Hak, G.C. Tepper, Modeling resistance of nanofibrous superhydrophobic coatings to hydrostatic pressures: the role of microstructure, Phys. Fluids, submitted for publication.
[59] Underwater sustainability of the “Cassie” state of wetting, Langmuir, Volume 25 (2009), pp. 12120-12126
[60] Effect of surface structure on the sustainability of an air layer on superhydrophobic coatings in a water–ethanol mixture, Langmuir, Volume 25 (2009), pp. 13-16
[61] Metastable underwater superhydrophobicity, Phys. Rev. Lett., Volume 105 (2010), p. 166104
[62] Slippy and sticky microtextured solids, Nanotechnology, Volume 14 (2003), pp. 1109-1112
[63] Superhydrophobic states, Nat. Mater., Volume 2 (2003), pp. 457-460
[64] Wetting and roughness, Annu. Rev. Mater. Res., Volume 38 (2008), pp. 71-99
- Coalescence-Induced Spontaneous Shedding of Microdroplets on Superhydrophobic Surfaces Featuring Enclosed Micropillars with Hierarchical Roughness, ACS Applied Materials Interfaces, Volume 17 (2025) no. 8, p. 12782 | DOI:10.1021/acsami.4c17859
- Processing Hydrophilic Poplar Wood into Durably Superhydrophobic Materials with High Stability and Self-Cleaning Properties, ACS Sustainable Chemistry Engineering, Volume 13 (2025) no. 15, p. 5737 | DOI:10.1021/acssuschemeng.5c01512
- Impact of Pathogenic Fungi on Leaf Surface Wettability: A Case Study of Erysiphe castaneigena, Ecohydrology, Volume 18 (2025) no. 2 | DOI:10.1002/eco.2755
- Research Progress of Photothermal Superhydrophobic Surfaces for Anti-Icing/Deicing, Molecules, Volume 30 (2025) no. 9, p. 1865 | DOI:10.3390/molecules30091865
- Experimental investigation of the effects of superhydrophobic surface treatment on the flow in the near wake of a sphere at Reynolds number 7780, Physics of Fluids, Volume 37 (2025) no. 5 | DOI:10.1063/5.0260367
- High-performance multi-functional solar panel coatings: recent advances, challenges, strategies and industrial aspects, RSC Applied Polymers, Volume 3 (2025) no. 2, p. 317 | DOI:10.1039/d4lp00295d
- Recent advancements in the applications of separation and enrichment strategies towards SERS detection, TrAC Trends in Analytical Chemistry, Volume 184 (2025), p. 118136 | DOI:10.1016/j.trac.2025.118136
- Stable Air Retention under Water on Artificial Salvinia Surfaces Enabled by the Air Spring Effect: The Importance of Geometrical and Surface‐Energy Barriers, and of the Air Spring Height, Advanced Materials Interfaces, Volume 11 (2024) no. 36 | DOI:10.1002/admi.202400400
- Ultrasonic Healing of Plastrons, Advanced Science, Volume 11 (2024) no. 33 | DOI:10.1002/advs.202403028
- Preparation and Self-Cleaning Properties of a Superhydrophobic Composite Coating on a Stainless Steel Substrate, Coatings, Volume 14 (2024) no. 2, p. 198 | DOI:10.3390/coatings14020198
- The Reynolds Number: A Journey from Its Origin to Modern Applications, Fluids, Volume 9 (2024) no. 12, p. 299 | DOI:10.3390/fluids9120299
- FRACTAL SURFACE RECOVERY AND SELF-HEALING CONTRIBUTED TO SUSTAINABLE SUPERHYDROPHOBICITY: A REVIEW, Fractals, Volume 32 (2024) no. 01 | DOI:10.1142/s0218348x22401119
- Green Fabrication of Superhydrophobic Surfaces Using Laser Surface Texturing Without Toxic Chemicals: A Review, International Journal of Precision Engineering and Manufacturing, Volume 25 (2024) no. 5, p. 1101 | DOI:10.1007/s12541-024-00962-4
- Hierarchical structure on tin bronze hydrostatic bearing surfaces to achieve ultra-high Cassie stability, Journal of Alloys and Compounds, Volume 1005 (2024), p. 175504 | DOI:10.1016/j.jallcom.2024.175504
- A comprehensive review of methodology and advancement in the development of superhydrophobic membranes for efficient oil–water separation, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Volume 46 (2024) no. 7 | DOI:10.1007/s40430-024-04954-3
- Liquid-infused surfaces for mitigation of corrosion and inorganic scaling, Materials Today Communications, Volume 39 (2024), p. 108865 | DOI:10.1016/j.mtcomm.2024.108865
- Effects of wall groove misalignment on viscoplastic flow dynamics in superhydrophobic channels, Physical Review Fluids, Volume 9 (2024) no. 12 | DOI:10.1103/physrevfluids.9.123301
- , Proceedings of the 2024 13th International Conference on Bioinformatics and Biomedical Science (2024), p. 53 | DOI:10.1145/3704198.3705866
- Nature-inspired anti-fouling strategies for combating marine biofouling, Progress in Organic Coatings, Volume 189 (2024), p. 108349 | DOI:10.1016/j.porgcoat.2024.108349
- Multiscale Architectured Nafion Membrane Derived from Lotus Leaf for Fuel Cell Applications, ACS Applied Materials Interfaces, Volume 15 (2023) no. 24, p. 29084 | DOI:10.1021/acsami.3c03050
- Many Facets of Photonic Crystals: From Optics and Sensors to Energy Storage and Photocatalysis, Advanced Materials Technologies, Volume 8 (2023) no. 6 | DOI:10.1002/admt.202201410
- Enhanced droplet repellency and jumping condensation on superhydrophobic lubricant-infused surfaces at high subcooling temperatures, Applied Physics A, Volume 129 (2023) no. 12 | DOI:10.1007/s00339-023-07110-1
- A numerical investigation of droplet bouncing behaviors on the superhydrophobic surfaces with different micro-structures, Case Studies in Thermal Engineering, Volume 43 (2023), p. 102728 | DOI:10.1016/j.csite.2023.102728
- Molecular Dynamics Simulations in Coatings, Coating Materials (2023), p. 125 | DOI:10.1007/978-981-99-3549-9_6
- Evolution of Air Plastron Thickness and Slip Length over Superhydrophobic Surfaces in Taylor Couette Flows, Fluids, Volume 8 (2023) no. 4, p. 133 | DOI:10.3390/fluids8040133
- Experimental and numerical Investigation on drag reduction using polymer coatings, IOP Conference Series: Materials Science and Engineering, Volume 1288 (2023) no. 1, p. 012045 | DOI:10.1088/1757-899x/1288/1/012045
- Drag Reduction Related to Boundary Layer Control in Transportation of Heavy Crude Oil by Pipeline: A Review, Industrial Engineering Chemistry Research, Volume 62 (2023) no. 37, p. 14818 | DOI:10.1021/acs.iecr.3c02212
- A simple model of heating and evaporation of droplets on a superhydrophobic surface, International Journal of Heat and Mass Transfer, Volume 201 (2023), p. 123568 | DOI:10.1016/j.ijheatmasstransfer.2022.123568
- Advances in Sol-Gel-Based Superhydrophobic Coatings for Wood: A Review, International Journal of Molecular Sciences, Volume 24 (2023) no. 11, p. 9675 | DOI:10.3390/ijms24119675
- A systematic review on polymer-based superhydrophobic coating for preventing biofouling menace, Journal of Coatings Technology and Research, Volume 20 (2023) no. 5, p. 1499 | DOI:10.1007/s11998-023-00773-8
- Effect of surface-active ionic liquids structure on their synthesis, physicochemical properties, and potential use as crop protection agents, Journal of Molecular Liquids, Volume 383 (2023), p. 122050 | DOI:10.1016/j.molliq.2023.122050
- Hydrophilic and Hydrophobic Surfaces: Features of Interaction with Liquid Drops, Materials, Volume 16 (2023) no. 17, p. 5932 | DOI:10.3390/ma16175932
- Study of the drag reduction performance on steel spheres with superhydrophobic ER/ZnO coating, Materials Science and Engineering: B, Volume 288 (2023), p. 116144 | DOI:10.1016/j.mseb.2022.116144
- Study of nano-ZnO improvement of the mechanical properties and corrosion resistance of modified-SiO2/PTFE superhydrophobic nanocomposite coatings by one-step spraying, New Journal of Chemistry, Volume 47 (2023) no. 13, p. 6246 | DOI:10.1039/d2nj06376j
- , Proceeding of 8th Thermal and Fluids Engineering Conference (TFEC) (2023), p. 1015 | DOI:10.1615/tfec2023.exp.045753
- Ultra-hydrophobic biomimetic transparent bilayer thin film deposited by atmospheric pressure plasma, Surfaces and Interfaces, Volume 42 (2023), p. 103398 | DOI:10.1016/j.surfin.2023.103398
- Energy absorption characteristics of the bionic lotus petiole structure under transverse load, Thin-Walled Structures, Volume 187 (2023), p. 110748 | DOI:10.1016/j.tws.2023.110748
- Flexible Tri-switchable Wettability Surface for Versatile Droplet Manipulations, ACS Applied Materials Interfaces, Volume 14 (2022) no. 32, p. 37248 | DOI:10.1021/acsami.2c12890
- Real‐Time Monitoring and Quantification of Underwater Superhydrophobicity, Advanced Materials Interfaces, Volume 9 (2022) no. 4 | DOI:10.1002/admi.202101393
- Efficiency of the Use of Commercial Superhydrophobic Coatings in the Fields of Marine Industry, Colloid Journal, Volume 84 (2022) no. 4, p. 465 | DOI:10.1134/s1061933x22040111
- Correlating Morphology and Multifractal Spatial Patterns of the Leaf Surface Architecture of Anacardium occidentale L., Fractal and Fractional, Volume 6 (2022) no. 6, p. 320 | DOI:10.3390/fractalfract6060320
- Laser surface functionalization to achieve extreme surface wetting conditions and resultant surface functionalities, Journal of Central South University, Volume 29 (2022) no. 10, p. 3217 | DOI:10.1007/s11771-022-5140-4
- A study on the preparation of passivating surface using bi-layer of nanostructured ZnO and silane functionalized polymer: an alternate option to chromate passivating coating, Journal of Coatings Technology and Research, Volume 19 (2022) no. 4, p. 1101 | DOI:10.1007/s11998-021-00588-5
- Applicability of anti-corrosion for slippery liquid-infused porous surface using a double-layer ZnO nanostructure on Al foil, Journal of Materials Science, Volume 57 (2022) no. 5, p. 3746 | DOI:10.1007/s10853-021-06819-9
- Bio-Inspired Hierarchical Micro-/Nanostructures for Anti-Icing Solely Fabricated by Metal-Assisted Chemical Etching, Micromachines, Volume 13 (2022) no. 7, p. 1077 | DOI:10.3390/mi13071077
- One-step fabrication of self-cleaning superhydrophobic surfaces: A combined experimental and molecular dynamics study, Surfaces and Interfaces, Volume 31 (2022), p. 102022 | DOI:10.1016/j.surfin.2022.102022
- A review on nature-inspired gating membranes: From concept to design and applications, The Journal of Chemical Physics, Volume 157 (2022) no. 14 | DOI:10.1063/5.0105641
- Enhanced air stability of ridged superhydrophobic surface with nanostructure, AIP Advances, Volume 11 (2021) no. 10 | DOI:10.1063/5.0067279
- Realizing surface amphiphobicity using 3D printing techniques: A critical move towards manufacturing low-cost reentrant geometries, Additive Manufacturing, Volume 38 (2021), p. 101777 | DOI:10.1016/j.addma.2020.101777
- Highly Robust, Pressure‐Resistant Superhydrophobic Coatings from Monolayer Assemblies of Chained Nanoparticles, Advanced Materials Interfaces, Volume 8 (2021) no. 2 | DOI:10.1002/admi.202000681
- Bioinspiration and Microtopography As Nontoxic Strategies for Marine Bioadhesion Control, Advanced Materials Interfaces, Volume 8 (2021) no. 20 | DOI:10.1002/admi.202100994
- Fabrication of robust and versatile superhydrophobic coating by two-step spray method: An experimental and molecular dynamics simulation study, Applied Surface Science, Volume 567 (2021), p. 150825 | DOI:10.1016/j.apsusc.2021.150825
- Surfaces and interfaces, Chemistry of Functional Materials Surfaces and Interfaces (2021), p. 9 | DOI:10.1016/b978-0-12-821059-8.00009-0
- The effect of a superhydrophobic coating on moisture absorption and tensile strength of 3D-printed carbon-fibre/polyamide, Composites Part A: Applied Science and Manufacturing, Volume 145 (2021), p. 106380 | DOI:10.1016/j.compositesa.2021.106380
- One-level microstructure-arrayed hydrophobic surface with low surface adhesion and strong anti-wetting function, Journal of Physics: Condensed Matter, Volume 33 (2021) no. 50, p. 505002 | DOI:10.1088/1361-648x/ac2929
- Molecular Dynamics Simulation of a Superhydrophobic Cellulose Derivative Targeted for Eco‐Friendly Packaging Material, Macromolecular Theory and Simulations, Volume 30 (2021) no. 1 | DOI:10.1002/mats.202000056
- Nature inspired emerging sensing technology: Recent progress and perspectives, Materials Science and Engineering: R: Reports, Volume 146 (2021), p. 100647 | DOI:10.1016/j.mser.2021.100647
- Superhydrophobic Nanocoatings as Intervention against Biofilm-Associated Bacterial Infections, Nanomaterials, Volume 11 (2021) no. 4, p. 1046 | DOI:10.3390/nano11041046
- Hydrophobic epoxy resin coated proppants with ultra-high self-suspension ability and enhanced liquid conductivity, Petroleum Science, Volume 18 (2021) no. 6, p. 1753 | DOI:10.1016/j.petsci.2021.09.004
- Slippery surfaces: A decade of progress, Physics of Fluids, Volume 33 (2021) no. 7 | DOI:10.1063/5.0056967
- Stereometric analysis of Amazon rainforest Anacardium occidentale L. leaves, Planta, Volume 253 (2021) no. 1 | DOI:10.1007/s00425-020-03529-5
- Current Progress in Mechanically Durable Water‐Repellent Surfaces: A Critical Review, Progress in Adhesion and Adhesives (2021), p. 709 | DOI:10.1002/9781119846703.ch16
- Switchable wettability control of titanium via facile nanosecond laser-based surface texturing, Surfaces and Interfaces, Volume 24 (2021), p. 101122 | DOI:10.1016/j.surfin.2021.101122
- Design of Chemical Surface Treatment for Laser-Textured Metal Alloys to Achieve Extreme Wetting Behavior, ACS Applied Materials Interfaces, Volume 12 (2020) no. 15, p. 18032 | DOI:10.1021/acsami.9b21438
- Pattern flow dynamics over rectangular Sharklet patterned membrane surfaces, Applied Surface Science, Volume 514 (2020), p. 145961 | DOI:10.1016/j.apsusc.2020.145961
- A theory for the slip and drag of superhydrophobic surfaces with surfactant, Journal of Fluid Mechanics, Volume 883 (2020) | DOI:10.1017/jfm.2019.857
- Roles of chemistry modification for laser textured metal alloys to achieve extreme surface wetting behaviors, Materials Design, Volume 192 (2020), p. 108744 | DOI:10.1016/j.matdes.2020.108744
- Obtaining hydrophobic surfaces in atmospheric pressure plasma, Materials Today: Proceedings, Volume 20 (2020), p. 335 | DOI:10.1016/j.matpr.2019.10.071
- The effect of the loss of superhydrophobic surface properties on biofouling and flow around shipbuilding's steel plates, Ocean Engineering, Volume 214 (2020), p. 107801 | DOI:10.1016/j.oceaneng.2020.107801
- Effect of Reynolds number on drag reduction in turbulent boundary layer flow over liquid–gas interface, Physics of Fluids, Volume 32 (2020) no. 12 | DOI:10.1063/5.0027727
- Super-hydrophobic and Super-hydrophilic Effect by Means of EDM Surface Structuring of γ-TiAl, Procedia CIRP, Volume 95 (2020), p. 393 | DOI:10.1016/j.procir.2020.02.332
- A comprehensive review on recent advances in superhydrophobic surfaces and their applications for drag reduction, Progress in Organic Coatings, Volume 140 (2020), p. 105537 | DOI:10.1016/j.porgcoat.2019.105537
- Microfiber coating for flow control: Effects on microfiber length in orientation control, Sensors and Actuators A: Physical, Volume 312 (2020), p. 112125 | DOI:10.1016/j.sna.2020.112125
- Air Retention under Water by the Floating Fern Salvinia: The Crucial Role of a Trapped Air Layer as a Pneumatic Spring, Small, Volume 16 (2020) no. 42 | DOI:10.1002/smll.202003425
- Approaches for Evaluating and Engineering Resilient Superhydrophobic Materials, Superhydrophobic Surfaces - Fabrications to Practical Applications (2020) | DOI:10.5772/intechopen.80746
- Superhydrophobic Coatings from Beeswax‐in‐Water Emulsions with Latent Heat Storage Capability, Advanced Materials Interfaces, Volume 6 (2019) no. 5 | DOI:10.1002/admi.201801782
- Preparation of photocatalytic thin films with composition dependent wetting properties and self-healing ability, Catalysis Today, Volume 328 (2019), p. 85 | DOI:10.1016/j.cattod.2018.10.015
- The role of viscous and capillary forces in the prediction of critical conditions defining super-hydrophobic and hydrophilic characteristics, Chemical Engineering Science, Volume 207 (2019), p. 527 | DOI:10.1016/j.ces.2019.06.013
- Morphology evolution of liquid–gas interface on submerged solid structured surfaces, Extreme Mechanics Letters, Volume 27 (2019), p. 34 | DOI:10.1016/j.eml.2019.01.005
- A review of nanoparticle‐enhanced membrane distillation membranes: membrane synthesis and applications in water treatment, Journal of Chemical Technology Biotechnology, Volume 94 (2019) no. 9, p. 2757 | DOI:10.1002/jctb.5977
- A porous superhydrophobic surface with active air plastron control for drag reduction and fluid impalement resistance, Journal of Materials Chemistry A, Volume 7 (2019) no. 27, p. 16387 | DOI:10.1039/c9ta02745a
- ИССЛЕДОВАНИЕ БИООБРАСТАНИЯ ПОЛИРОВАННОЙ И СУПЕРГИДРОФОБНОЙ ПОВЕРХНОСТЕЙ СТАЛИ МАРКИ A40S В УСЛОВИЯХ КЕРЧЕНСКОГО ПРОЛИВА, "НАУКА ЮГА РОССИИ", Science in the South of Russia (2019) no. 2, p. 10 | DOI:10.7868/s25000640190202
- Recent developments in multifunctional coatings for solar panel applications: A review, Solar Energy Materials and Solar Cells, Volume 189 (2019), p. 75 | DOI:10.1016/j.solmat.2018.09.015
- Facile electrodeposition of superhydrophobic aluminum stearate thin films on copper substrates for active corrosion protection, Surface and Coatings Technology, Volume 364 (2019), p. 406 | DOI:10.1016/j.surfcoat.2019.02.070
- Rendering hydrophilic glass-ceramic enamel surfaces hydrophobic by acid etching and surface silanization for heat transfer applications, Surface and Coatings Technology, Volume 370 (2019), p. 82 | DOI:10.1016/j.surfcoat.2019.04.062
- Synthesis and characterization of styrene-based polyfluoroacrylate film for hydrophobic/icephobic applications, Thin Solid Films, Volume 687 (2019), p. 137462 | DOI:10.1016/j.tsf.2019.137462
- Spontaneous and Directional Bubble Transport on Porous Copper Wires with Complex Shapes in Aqueous Media, ACS Applied Materials Interfaces, Volume 10 (2018) no. 3, p. 3076 | DOI:10.1021/acsami.7b15681
- Bioinspired Surfaces with Superamphiphobic Properties: Concepts, Synthesis, and Applications, Advanced Functional Materials, Volume 28 (2018) no. 19 | DOI:10.1002/adfm.201707415
- Wetting Models and Working Mechanisms of Typical Surfaces Existing in Nature and Their Application on Superhydrophobic Surfaces: A Review, Advanced Materials Interfaces, Volume 5 (2018) no. 1 | DOI:10.1002/admi.201701052
- Hydrophobic and superhydrophobic surfaces fabricated using atmospheric pressure cold plasma technology: A review, Advances in Colloid and Interface Science, Volume 254 (2018), p. 1 | DOI:10.1016/j.cis.2018.03.009
- Drop-wise and film-wise water condensation processes occurring on metallic micro-scaled surfaces, Applied Surface Science, Volume 444 (2018), p. 604 | DOI:10.1016/j.apsusc.2018.03.065
- Superhydrophobic, Superoleophobic and Antimicrobial Coatings for the Protection of Silk Textiles, Coatings, Volume 8 (2018) no. 3, p. 101 | DOI:10.3390/coatings8030101
- Magnetic Field Inspired Contact Angle Hysteresis Drives Floating Polyolefin Rafts, Colloid and Interface Science Communications, Volume 22 (2018), p. 38 | DOI:10.1016/j.colcom.2017.12.002
- Boundary conditions with adjustable slip length for the lattice Boltzmann simulation of liquid flow, Computers Fluids, Volume 174 (2018), p. 200 | DOI:10.1016/j.compfluid.2018.08.002
- Turbulent channel flow over riblets with superhydrophobic coating, Experimental Thermal and Fluid Science, Volume 94 (2018), p. 192 | DOI:10.1016/j.expthermflusci.2018.02.001
- Facile Preparation of Hydrophobic Aluminum Oxide Film via Sol-Gel Method, Frontiers in Chemistry, Volume 6 (2018) | DOI:10.3389/fchem.2018.00308
- Various nanoparticle morphologies and wettability properties of aluminum oxide films controlled by water content during the hydrothermal reaction, Journal of Alloys and Compounds, Volume 749 (2018), p. 180 | DOI:10.1016/j.jallcom.2018.03.276
- Effects of electrospinning conditions on microstructural properties of polystyrene fibrous materials, Journal of Applied Physics, Volume 124 (2018) no. 23 | DOI:10.1063/1.5049128
- Superhydrophobic surfaces: a review on fundamentals, applications, and challenges, Journal of Coatings Technology and Research, Volume 15 (2018) no. 2, p. 231 | DOI:10.1007/s11998-017-0011-x
- Wake of super-hydrophobic falling spheres: influence of the air layer deformation, Journal of Fluid Mechanics, Volume 850 (2018), p. 646 | DOI:10.1017/jfm.2018.480
- Facile preparation of superhydrophobic silica nanoparticles by hydrothermal-assisted sol–gel process and effects of hydrothermal time on surface modification, Journal of Sol-Gel Science and Technology, Volume 87 (2018) no. 2, p. 478 | DOI:10.1007/s10971-018-4731-x
- Tunable Bubble Assembling on a Hybrid Superhydrophobic–Superhydrophilic Surface Fabricated by Selective Laser Texturing, Langmuir, Volume 34 (2018) no. 44, p. 13203 | DOI:10.1021/acs.langmuir.8b02879
- Annealing dependent evolution of columnar nanostructures in RF magnetron sputtered PTFE films for hydrophobic applications, Materials Research Express, Volume 5 (2018) no. 1, p. 015312 | DOI:10.1088/2053-1591/aaa5f3
- Superhydrophobic surfaces: From nature to biomimetic through VOF simulation, Micron, Volume 107 (2018), p. 94 | DOI:10.1016/j.micron.2018.01.013
- Numerical study of laminar boundary-layer flows over a superhydrophobic plate, Physics of Fluids, Volume 30 (2018) no. 7 | DOI:10.1063/1.5039605
- Engineered bio-inspired coating for passive flow control, Proceedings of the National Academy of Sciences, Volume 115 (2018) no. 6, p. 1210 | DOI:10.1073/pnas.1715567115
- Experimental investigations on drag-reduction characteristics of bionic surface with water-trapping microstructures of fish scales, Scientific Reports, Volume 8 (2018) no. 1 | DOI:10.1038/s41598-018-30490-x
- Effect of the orientation of the harbor seal vibrissa based biomimetic cylinder on hydrodynamic forces and vortex induced frequency, AIP Advances, Volume 7 (2017) no. 10 | DOI:10.1063/1.5008658
- Recent Progress in Fabricating Superaerophobic and Superaerophilic Surfaces, Advanced Materials Interfaces, Volume 4 (2017) no. 9 | DOI:10.1002/admi.201601088
- Developing PES membrane by modified Co3O4–OA nanoparticles for direct contact membrane distillation process, Asia-Pacific Journal of Chemical Engineering, Volume 12 (2017) no. 4, p. 582 | DOI:10.1002/apj.2100
- Creeping flow dynamics over superhydrophobic ball: Slip effects and drag reduction, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 529 (2017), p. 998 | DOI:10.1016/j.colsurfa.2017.07.019
- Plasma modified PLA electrospun membranes for actinorhodin production intensification in Streptomyces coelicolor immobilized-cell cultivations, Colloids and Surfaces B: Biointerfaces, Volume 157 (2017), p. 233 | DOI:10.1016/j.colsurfb.2017.05.060
- Analysis of impact phenomenon on superhydrophobic surfaces based on molecular dynamics simulation, Computational Materials Science, Volume 134 (2017), p. 8 | DOI:10.1016/j.commatsci.2017.03.013
- Transition from superhydrophilic to superhydrophobic state of laser textured stainless steel surface and its effect on corrosion resistance, Corrosion Science, Volume 123 (2017), p. 21 | DOI:10.1016/j.corsci.2017.04.005
- The Model of Masstransfer Intensification in Channels Using Nanowiresets inside and Nanostructures on the Wall, Journal of Physics: Conference Series, Volume 815 (2017), p. 012013 | DOI:10.1088/1742-6596/815/1/012013
- Design considerations in the development of wound healing bionanomaterials, Nanostructures for Novel Therapy (2017), p. 343 | DOI:10.1016/b978-0-323-46142-9.00013-x
- Traces of surfactants can severely limit the drag reduction of superhydrophobic surfaces, Proceedings of the National Academy of Sciences, Volume 114 (2017) no. 28, p. 7254 | DOI:10.1073/pnas.1702469114
- Slip-enhanced flow through thin packed column with superhydrophobic wall, Sensors and Actuators B: Chemical, Volume 240 (2017), p. 468 | DOI:10.1016/j.snb.2016.09.012
- Effect of surface morphology on measurement and interpretation of boundary slip on superhydrophobic surfaces, Surface and Interface Analysis, Volume 49 (2017) no. 7, p. 594 | DOI:10.1002/sia.6197
- Drag on superhydrophobic sharkskin inspired surface in a closed channel turbulent flow, The Canadian Journal of Chemical Engineering, Volume 95 (2017) no. 10, p. 1934 | DOI:10.1002/cjce.22850
- Underwater Superhydrophobicity: Stability, Design and Regulation, and Applications, Applied Mechanics Reviews, Volume 68 (2016) no. 3 | DOI:10.1115/1.4033706
- Investigation of optical and microstructural properties of RF magnetron sputtered PTFE films for hydrophobic applications, Applied Surface Science, Volume 385 (2016), p. 289 | DOI:10.1016/j.apsusc.2016.05.121
- Verbesserung von Kunstharzbeschichtungen durch Nanopartikel mit maßgeschneiderter Oberflächenmodifizierung, Chemie Ingenieur Technik, Volume 88 (2016) no. 7, p. 958 | DOI:10.1002/cite.201500171
- Tuning the wetting properties of siloxane-nanoparticle coatings to induce superhydrophobicity and superoleophobicity for stone protection, Materials Design, Volume 108 (2016), p. 736 | DOI:10.1016/j.matdes.2016.07.014
- From natural to biomimetic: The superhydrophobicity and the contact time, Microscopy Research and Technique, Volume 79 (2016) no. 8, p. 712 | DOI:10.1002/jemt.22689
- Fabrication and corrosion resistance properties of super-hydrophobic coatings on iron and steel substrates by creating micro-/nano-structures and modifying rough surfaces, RSC Advances, Volume 6 (2016) no. 96, p. 93419 | DOI:10.1039/c6ra17655k
- UNDERWATER SLIDING PROPERTIES: EFFECT OF SLIDER SHAPE AND SURFACE WETTABILITY, Surface Review and Letters, Volume 23 (2016) no. 05, p. 1650042 | DOI:10.1142/s0218625x16500426
- A cost-effective method to create physically and thermally stable and storable super-hydrophobic aluminum alloy surfaces, Surface and Coatings Technology, Volume 285 (2016), p. 227 | DOI:10.1016/j.surfcoat.2015.11.023
- Fast fabrication of superhydrophobic surfaces on Ti–6Al–4V substrates by deposition of lead, Surface and Coatings Technology, Volume 302 (2016), p. 507 | DOI:10.1016/j.surfcoat.2016.06.057
- , 2015 IEEE International Conference on Information and Automation (2015), p. 353 | DOI:10.1109/icinfa.2015.7279312
- Bioinspired Gas Bubble Spontaneous and Directional Transportation Effects in an Aqueous Medium, Advanced Materials, Volume 27 (2015) no. 14, p. 2384 | DOI:10.1002/adma.201405087
- Superhydrophobic surfaces for applications in seawater, Advances in Colloid and Interface Science, Volume 222 (2015), p. 291 | DOI:10.1016/j.cis.2015.01.005
- Slippery liquid-infused porous surface based on perfluorinated lubricant/iron tetradecanoate: Preparation and corrosion protection application, Applied Surface Science, Volume 328 (2015), p. 491 | DOI:10.1016/j.apsusc.2014.12.067
- Nanosecond laser micro- and nanotexturing for the design of a superhydrophobic coating robust against long-term contact with water, cavitation, and abrasion, Applied Surface Science, Volume 332 (2015), p. 513 | DOI:10.1016/j.apsusc.2015.01.202
- Superhydrophobic coatings fabricated with polytetrafluoroethylene and SiO2 nanoparticles by spraying process on carbon steel surfaces, Applied Surface Science, Volume 349 (2015), p. 724 | DOI:10.1016/j.apsusc.2015.05.068
- The capillary adhesion technique: a versatile method for determining the liquid adhesion force and sample stiffness, Beilstein Journal of Nanotechnology, Volume 6 (2015), p. 11 | DOI:10.3762/bjnano.6.2
- Biotribology: Recent progresses and future perspectives, Biosurface and Biotribology, Volume 1 (2015) no. 1, p. 3 | DOI:10.1016/j.bsbt.2015.03.001
- Superhydrophobic coating on fiberglass cloth for selective removal of oil from water, Chemical Engineering Journal, Volume 262 (2015), p. 210 | DOI:10.1016/j.cej.2014.09.082
- Water slip flow in superhydrophobic microtubes within laminar flow region, Chinese Journal of Chemical Engineering, Volume 23 (2015) no. 5, p. 763 | DOI:10.1016/j.cjche.2014.12.010
- Effects of hydrostatic pressure on wetted area of submerged superhydrophobic granular coatings. Part 1: mono-dispersed coatings, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 465 (2015), p. 87 | DOI:10.1016/j.colsurfa.2014.10.032
- Sizing agent on the carbon fibers surface and interface properties of its composites, Fibers and Polymers, Volume 16 (2015) no. 3, p. 657 | DOI:10.1007/s12221-015-0657-x
- Biomimetic superoleophobic surfaces: focusing on their fabrication and applications, Journal of Materials Chemistry A, Volume 3 (2015) no. 5, p. 1811 | DOI:10.1039/c4ta05582a
- Utilization of Cavity Vortex To Delay the Wetting Transition in One-Dimensional Structured Microchannels, Langmuir, Volume 31 (2015) no. 49, p. 13373 | DOI:10.1021/acs.langmuir.5b03666
- Effect of absolute pressure on flow through a textured hydrophobic microchannel, Microfluidics and Nanofluidics, Volume 19 (2015) no. 6, p. 1409 | DOI:10.1007/s10404-015-1655-4
- An experimental study on the effects of rough hydrophobic surfaces on the flow around a circular cylinder, Physics of Fluids, Volume 27 (2015) no. 8 | DOI:10.1063/1.4929545
- Characterisation of lotus-leaf-like superhydrophobic fluorinated polysiloxane coating prepared with gradient coating technology, Plastics, Rubber and Composites, Volume 44 (2015) no. 2, p. 63 | DOI:10.1179/1743289814y.0000000118
- Manufacturing textured surfaces: State of art and recent developments, Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, Volume 229 (2015) no. 1, p. 3 | DOI:10.1177/1350650114542242
- Confocal laser scanning microscopy elucidation of the micromorphology of the leaf cuticle and analysis of its chemical composition, Protoplasma, Volume 252 (2015) no. 6, p. 1475 | DOI:10.1007/s00709-015-0777-6
- Biomimetic “Water Strider Leg” with Highly Refined Nanogroove Structure and Remarkable Water-Repellent Performance, ACS Applied Materials Interfaces, Volume 6 (2014) no. 18, p. 16237 | DOI:10.1021/am5044054
- Spray-coating process in preparing PTFE-PPS composite super-hydrophobic coating, AIP Advances, Volume 4 (2014) no. 3 | DOI:10.1063/1.4868377
- Controllable fabrication of lotus-leaf-like superhydrophobic surface on copper foil by self-assembly, Applied Physics A, Volume 116 (2014) no. 4, p. 1613 | DOI:10.1007/s00339-014-8472-6
- One-step fabrication of superhydrophobic hierarchical structures by femtosecond laser ablation, Applied Surface Science, Volume 313 (2014), p. 411 | DOI:10.1016/j.apsusc.2014.05.224
- Self-propulsion of dew drops on lotus leaves: a potential mechanism for self cleaning, Biofouling, Volume 30 (2014) no. 4, p. 427 | DOI:10.1080/08927014.2014.880885
- Controlling air solubility to maintain “Cassie” state for sustained drag reduction, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 459 (2014), p. 217 | DOI:10.1016/j.colsurfa.2014.07.006
- Biotechnologies and bioinspired materials for the construction industry: an overview, International Journal of Sustainable Engineering, Volume 7 (2014) no. 3, p. 235 | DOI:10.1080/19397038.2013.844741
- Superhydrophobic turbulent drag reduction as a function of surface grating parameters, Journal of Fluid Mechanics, Volume 747 (2014), p. 722 | DOI:10.1017/jfm.2014.151
- Hydrophobicity and drag reduction properties of surfaces coated with silica aerogels and xerogels, Journal of Sol-Gel Science and Technology, Volume 71 (2014) no. 3, p. 490 | DOI:10.1007/s10971-014-3388-3
- Development of Poly(propylene) Superhydrophobic Surfaces by Functionalised TiO2 Nanoparticles: Effect of Solvents and Dipping Times, Macromolecular Symposia, Volume 344 (2014) no. 1, p. 55 | DOI:10.1002/masy.201300218
- Fabrication of metal electrodes on flexible substrates by controlled deposition of conductive nano-ink, Materials Letters, Volume 117 (2014), p. 179 | DOI:10.1016/j.matlet.2013.05.094
- A Study on Hydrophobicity of Silicon and a Few Dielectric Materials, Micro and Smart Devices and Systems (2014), p. 265 | DOI:10.1007/978-81-322-1913-2_16
- Selective attachment processes in ancient gold ore beneficiation, Minerals Engineering, Volume 58 (2014), p. 52 | DOI:10.1016/j.mineng.2014.01.009
- Polymeric Slippery Coatings: Nature and Applications, Polymers, Volume 6 (2014) no. 5, p. 1266 | DOI:10.3390/polym6051266
- , 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS) (2013), p. 397 | DOI:10.1109/memsys.2013.6474262
- Analysis of anti-condensation mechanism on superhydrophobic anodic aluminum oxide surface, Applied Thermal Engineering, Volume 58 (2013) no. 1-2, p. 664 | DOI:10.1016/j.applthermaleng.2013.01.048
- Convective Mass Transfer From Submerged Superhydrophobic Surfaces, International Journal of Flow Control, Volume 5 (2013) no. 2, p. 79 | DOI:10.1260/1756-8250.5.2.79
- Convective Mass Transfer From Submerged Superhydrophobic Surfaces: Turbulent Flow, International Journal of Flow Control, Volume 5 (2013) no. 3-4, p. 143 | DOI:10.1260/1756-8250.5.3-4.143
- Preparation of superhydrophobic surfaces on Al substrates and the anti-icing behavior, Journal of Alloys and Compounds, Volume 576 (2013), p. 215 | DOI:10.1016/j.jallcom.2013.04.060
- Novel method to characterize superhydrophobic coatings, Journal of Colloid and Interface Science, Volume 395 (2013), p. 315 | DOI:10.1016/j.jcis.2012.12.066
- Dynamic Air Layer on Textured Superhydrophobic Surfaces, Langmuir, Volume 29 (2013) no. 35, p. 11074 | DOI:10.1021/la402306c
- Comment on “Experimental study of skin friction drag reduction on superhydrophobic flat plates in high Reynolds number boundary layer flow” [Phys. Fluids 25, 025103 (2013)], Physics of Fluids, Volume 25 (2013) no. 7 | DOI:10.1063/1.4816362
- Antimicrobial Surfaces, Ullmann's Encyclopedia of Industrial Chemistry (2013), p. 1 | DOI:10.1002/14356007.q03_q01
- Effects of hydrostatic pressure on the drag reduction of submerged aerogel-particle coatings, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 399 (2012), p. 62 | DOI:10.1016/j.colsurfa.2012.02.025
- Can slip walls improve field-flow fractionation or hydrodynamic chromatography?, Journal of Chromatography A, Volume 1256 (2012), p. 206 | DOI:10.1016/j.chroma.2012.07.027
- Surface chemistry controlled superhydrophobic stability of W18O49 nanowire arrays submerged underwater, Journal of Materials Chemistry, Volume 22 (2012) no. 38, p. 20250 | DOI:10.1039/c2jm34307j
- Influence of Flow on Longevity of Superhydrophobic Coatings, Langmuir, Volume 28 (2012) no. 25, p. 9759 | DOI:10.1021/la301299e
- Sustainability of superhydrophobicity under pressure, Physics of Fluids, Volume 24 (2012) no. 11 | DOI:10.1063/1.4766200
- Biomimetic flow control based on morphological features of living creatures, Physics of Fluids, Volume 24 (2012) no. 12 | DOI:10.1063/1.4772063
Cité par 177 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier