Comptes Rendus
The structure and mechanical properties of dragonfly wings and their role on flyability
Comptes Rendus. Mécanique, Volume 340 (2012) no. 1-2, pp. 3-17.

Dragonfly wings possess great stability and high load-bearing capacity during flapping flight, glide, and hover. Scientists have been intrigued by them and have carried out research for biomimetic applications. Relative to the large number of works on its flight aerodynamics, few researchers have focused on the insect wing structure and its mechanical properties. The wings of dragonflies are mainly composed of veins and membranes, a typical nanocomposite material. The veins and membranes have a complex design within the wing that give rise to whole-wing characteristics which result in dragonflies being supremely versatile, maneuverable fliers. The wing structure, especially corrugation, on dragonflies is believed to enhance aerodynamic performance. The mechanical properties of dragonfly wings need to be understood in order to perform simulated models. This paper focuses on the effects of structure, mechanical properties, and morphology of dragonfly wings on their flyability, followed by the implications in fabrication and modeling.

Published online:
DOI: 10.1016/j.crme.2011.11.003
Keywords: Dragonfly wing, Structure, Mechanical properties, Flyability

Jiyu Sun 1, 2; Bharat Bhushan 2

1 Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, 130025, PR China
2 Nanoprobe Laboratory for Bio- & Nanotechnology and Biomimetics (NLB2), The Ohio State University, 201 W. 19th Avenue, Columbus, OH 43210-1142, USA
@article{CRMECA_2012__340_1-2_3_0,
     author = {Jiyu Sun and Bharat Bhushan},
     title = {The structure and mechanical properties of dragonfly wings and their role on flyability},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {3--17},
     publisher = {Elsevier},
     volume = {340},
     number = {1-2},
     year = {2012},
     doi = {10.1016/j.crme.2011.11.003},
     language = {en},
}
TY  - JOUR
AU  - Jiyu Sun
AU  - Bharat Bhushan
TI  - The structure and mechanical properties of dragonfly wings and their role on flyability
JO  - Comptes Rendus. Mécanique
PY  - 2012
SP  - 3
EP  - 17
VL  - 340
IS  - 1-2
PB  - Elsevier
DO  - 10.1016/j.crme.2011.11.003
LA  - en
ID  - CRMECA_2012__340_1-2_3_0
ER  - 
%0 Journal Article
%A Jiyu Sun
%A Bharat Bhushan
%T The structure and mechanical properties of dragonfly wings and their role on flyability
%J Comptes Rendus. Mécanique
%D 2012
%P 3-17
%V 340
%N 1-2
%I Elsevier
%R 10.1016/j.crme.2011.11.003
%G en
%F CRMECA_2012__340_1-2_3_0
Jiyu Sun; Bharat Bhushan. The structure and mechanical properties of dragonfly wings and their role on flyability. Comptes Rendus. Mécanique, Volume 340 (2012) no. 1-2, pp. 3-17. doi : 10.1016/j.crme.2011.11.003. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2011.11.003/

[1] M. Tamai, Experimental investigations on biologically inspired airfoils for MAV applications, Master thesis, Iowa State University, Ames, Iowa, U.S., 2007.

[2] D. Floreano; J.C. Zufferey; M.V. Srinivasan; C. Ellington Flying Insects and Robots, Springer-Verlag, Heidelberg, Germany, 2009

[3] R. Ganguli; S. Gorb; F.O. Lehmann; S. Mukherjee; S. Mukherjee An experimental and numerical study of calliphora wing structure, Exp. Mech., Volume 50 (2010), pp. 1183-1197

[4] B. Bhushan Biomimetics: lessons from nature-an overview, Phil. Trans. R. Soc. A, Volume 367 (2009), pp. 1445-1486

[5] R.J. Wootton; R.C. Herbert; P.G. Young; K.E. Evans Approaches to the structural modelling of insect wings, Philos. Trans. R. Soc. Lond. B Biol. Sci., Volume 358 (2003), pp. 1577-1587

[6] A.B. Kesel; U. Philippi; W. Nachtigall Biomechanical aspects of the insect wing: an analysis using the finite element method, Comp. Biol. Med., Volume 28 (1998), pp. 423-437

[7] J.F.V. Vincent; O.A. Bogatyreva; N.R. Bogatyrev; A. Bowyer; A.K. Pahl Biomimetics: Its practice and theory, J. R. Soc. Interface, Volume 3 (2006), pp. 471-482

[8] B. Alberts; A. Johnson; J. Lewis; M. Raff; K. Roberts; P. Walter Molecular Biology of the Cell, Garland Science, New York, 2008

[9] M.A. Meyers; P.Y. Chen; A.Y.M. Lin; Y. Seki Biological materials: Structure and mechanical properties, Prog. Mater. Sci., Volume 53 (2008), pp. 1-206

[10] R.J. Wootton Functional morphology of insect wings, Annu. Rev. Entomol., Volume 37 (1992), pp. 113-140

[11] R.J. Wootton; J. Kukalová-Peck; D.J.S. Newman; J. Muzón Smart engineering in the mid-carboniferous: How well could palaeozoic dragonflies fly?, Science, Volume 282 (1998), pp. 749-751

[12] S.A. Combes; T.L. Daniel Flexural stiffness in insect wings I. Scaling and the influence of wing venation, J. Exp. Biol., Volume 206 (2003), pp. 2979-2987

[13] S.A. Combes; T.L. Daniel Flexural stiffness in insect wings II. Spatial distribution and dynamic wing bending, J. Exp. Biol., Volume 206 (2003), pp. 2989-2997

[14] A. Azuma; S. Azuma; I. Watanabe; T. Furuta Flight mechanics of a dragonfly, J. Exp. Biol., Volume 116 (1985), pp. 79-107

[15] S. Ho; H. Nassef; N. Pornsinsirirak; Y.C. Tai; C.M. Ho Unsteady aerodynamics and flow control for flapping wing flyers, Prog. Aerosp. Sci., Volume 39 (2003), pp. 635-681

[16] Z.J. Wang Dissecting insect flight, Annu. Rev. Fluid Mech., Volume 37 (2005), pp. 183-210

[17] W. Shyy; Y. Lian; J. Tang; D. Viieru; H. Liu Aerodynamics of Low Reynolds Number Flyers, Cambridge University Press, UK, 2008

[18] W. Shyy; H. Aono; S.K. Chimakurthi; P. Trizila; C.K. Kang; C.E.S. Cesnik; H. Liu Recent progress in flapping wing aerodynamics and aeroelasticity, Prog. Aerosp. Sci., Volume 46 (2010), pp. 284-327

[19] J.G. Needham A genealogic study of dragon-fly wing venation, Proc. U.S. Natn. Mus., Volume 26 (1903), pp. 703-764

[20] T. Deubel; S. Wanke; C. Weber; F. Wedekind Modelling and manufacturing of a dragonfly wing as basis for bionic research (D. Marjanovic, ed.), Proceedings of the 9th International Design Conference (DESIGN 2006), 2006, pp. 215-220

[21] H. Hu; M. Tamai Bioinspired corrugated airfoil at low Reynolds numbers, J. Aircraft, Volume 45 (2008), pp. 2068-2077

[22] M. Okamoto; K. Yasuda; A. Azuma Aerodynamic characteristics of the wings and body of a dragonfly, J. Exp. Biol., Volume 199 (1996), pp. 281-294

[23] S. Sunada; L.J. Zeng; K. Kawachi The relationship between dragonfly wing structure and torsional deformation, J. Theor. Biol., Volume 193 (1998), pp. 39-45

[24] K. Machida; T. Oikawa; J. Shimanuki The effect of the costal vein configuration of the wings of a dragonfly, Key Eng. Mater., Volume 326–328 (2006), pp. 819-822

[25] K. Machida; T. Oikawa Structure analyses of the wings of anotogaster sieboldii and hybris subjacens, Key Eng. Mater., Volume 345–346 (2007), pp. 1237-1240

[26] R.J. Wootton; D.J.S. Newman Evolution, diversification, and mechanics of dragonfly wings (Alex Córdoba-Aguilar, ed.), Dragonflies and Damselflies: Model Organisms for Ecological and Evolutionary Research, Oxford University Press, UK, 2008

[27] D.W. Bechert; R. Meyer; W. Hage Drag reduction of airfoils with miniflaps. Can we learn from dragonflies?, Fluids, Volume 19–22 (2000), pp. 1-30

[28] S.R. Jongerius; D. Lentink Structural analysis of a dragonfly wing, Exp. Mech., Volume 50 (2010), pp. 1323-1334

[29] D.J.S. Newman, The functional wing morphology of some Odonata, PhD thesis, University of Exeter, Exeter, Devon, UK, 1982.

[30] M. Yadav Biology of Insects, Discovery Publishing House Press, New Delhi, India, 2003

[31] R.A. Norberg The pterostigma of insect wings, an inertial regulator of wing pitch, J. Comp. Physiol., Volume 81 (1972), pp. 9-22

[32] X.S. Wang; Y. Li; Y.F. Shi Effects of sandwich microstructures on mechanical behaviors of dragonfly wing vein, Compos. Sci. Tech., Volume 68 (2008), pp. 186-192

[33] M. Darvizeh; A. Darvizeh; H. Rajabi; A. Rezaei Free vibration analysis of dragonfly wings using finite element method, Int. J. Multiphysics, Volume 3 (2009), pp. 101-110

[34] S. Sudo; K. Tsuyuki; T. Ikohagi; F. Ohta; S. Shida; J. Tani A study on the wing structure and flapping behavior of a dragonfly, JSME Int. J., Volume 42 (1999), pp. 721-729

[35] A.B. Kesel Aerodynamic characteristics of dragonfly wing sections compared with technical aerofoils, J. Exp. Biol., Volume 203 (2000), pp. 3125-3135

[36] S.N. Gorb; A. Kesel; J. Berger Microsculpture of the wing surface in Odonata: evidence for cuticular wax covering, Arthropod Struct. Dev., Volume 29 (2000), pp. 129-135

[37] P. Kreuz; W. Arnold; A.B. Kesel Acoustic microscopic analysis of the biological structure of insect wing membranes with emphasis on their waxy surface, Ann. Biomed. Eng., Volume 29 (2001), pp. 1054-1058

[38] F. Song; K.W. Xiao; K. Bai; Y.L. Bai Microstructure and nanomechanical properties of the wing membrane of dragonfly, Mater. Sci. Eng. A, Volume 457 (2007), pp. 254-260

[39] S. Sudo; K. Tsuyuki; T. Kobayashi Experimental study on the collision of a droplet with a dragonfly wing, J. Jpn. Soc. Exp. Mech., Volume 5 (2005), pp. 272-279

[40] M. Nosonovsky; B. Bhushan Multiscale Dissipative Mechanisms and Hierarchical Surfaces: Friction, Superhydrophobicity, and Biomimetics, Springer-Verlag, Heidelberg, Germany, 2008

[41] T. Wagner; C. Neinhuis; W. Barthlott Wettability and contaminability of insect wings as a function of their surface sculptures, Acta Zoologica, Volume 77 (1996), pp. 213-225

[42] D.J.S. Newman; R.J. Wootton An approach to the mechanics of pleating in dragonfly wings, J. Exp. Biol., Volume 125 (1986), pp. 361-371

[43] S. Sudo; K. Tsuyuki; J. Tani Wing morphology of some insects, JSME Int. J., Volume 43 (2000), pp. 895-900

[44] W. Shyy; M. Berg; D. Ljungqvist Flapping and flexible wings for biological and micro airvehicles, Prog. Aerosp. Sci., Volume 35 (1999), pp. 455-505

[45] A. Azuma The Biokinetics of Flying and Swimming, American Institute of Aeronautics and Astronautics Inc., Virginia, 2006

[46] A. Vargas; R. Mittal; H.B. Dong A computational study of the aerodynamic performance of a dragonfly wing section in gliding flight, Bioinspir. Biomim., Volume 3 (2008), p. 026004

[47] P. Kreuz; A. Kesel; M. Kempf; M. Göken; H. Vehoff; W. Nachtigall Mechanische eigenschaften biologischer materialien am beispiel insektenflügel (W. Nachtigall; A. Wisser, eds.), Biona-Report 14, Fischer, Stuttgart, Germany, 1999

[48] P. Kreuz; A.B. Kesel; W. Arnold; H. Vehoff; W. Nachtigall Struktur- und Materialanalyse biologischer Systeme Die Flügelkutikula der Insekten (Odonata, Anisopter) (W. Nachtigall; A. Wisser, eds.), Biona-Report 14, Fischer, Stuttgart, Germany, 2000

[49] M. Kempf, Biological materials, determination of Youngʼs moduli of the insect cuticle (dragonflies, 2000; Anisoptera), Application note, Hysitron Inc, www.hysitron.com.

[50] J. Tong; Y.R. Zhao; J.Y. Sun; D.H. Chen Nanomechanical properties of the stigma of dragonfly Anax parthenope julius Brauer, J. Mater. Sci., Volume 42 (2007), pp. 2894-2898

[51] J.Y. Sun; C.X. Pan; J. Tong; J. Zhang Coupled model analysis of the structure and nano-mechanical properties of dragonfly wings, IET Nanobiotechnol., Volume 4 (2010), pp. 10-18

[52] B. Bhushan; X. Li Nanomechanical characterisation of solid surfaces and thin films, Intl. Mater. Rev., Volume 48 (2003), pp. 125-164

[53] B. Bhushan Springer Handbook of Nanotechnology, Springer-Verlag, Heidelberg, Germany, 2010

[54] B. Bhushan Nanotribology and Nanomechanics I – Measurement Techniques and Nanomechanics, II – Nanotribology, Biomimetics, and Industrial Applications, Springer-Verlag, Heidelberg, Germany, 2011

[55] S.P. Sane The aerodynamics of insect flight, J. Exp. Biol., Volume 206 (2003), pp. 4191-4208

[56] T. Weis-Fogh Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production, J. Exp. Biol., Volume 59 (1973), pp. 169-230

[57] M.J. Lighthill On the Weis-Fogh mechanism of lift generation, J. Fluid Mech., Volume 60 (1973), pp. 1-17

[58] T. Maxworthy Experiments on the Weis-Fogh mechanism of lift generation by insects in hovering flight. Part I. Dynamics of the ‘fling’, J. Fluid Mech., Volume 93 (1979), pp. 47-63

[59] G.R. Spedding; T. Maxworthy The generation of circulation and lift in a rigid two-dimensional fling, J. Fluid Mech., Volume 165 (1986), pp. 247-272

[60] G.R. Spedding; P.B.S. Lissaman Technical aspects of microscale flight systems, J. Avian. Biol., Volume 29 (1998), pp. 458-468

[61] Z.J. Wang Two dimensional mechanism for insect hovering, Phys. Rev. Lett., Volume 85 (2000), pp. 2216-2219

[62] C. Somps; M. Luttges Dragonfly flight – novel uses of unsteady separated flows, Science, Volume 228 (1985), pp. 1326-1329

[63] J.M. Wakeling; C.P. Ellington Dragonfly flight I: gliding flight and steady-state aerodynamic forces, J. Exp. Biol., Volume 200 (1997), pp. 543-556

[64] T.A. Swanson, An experimental and numerical investigation of flapping and plunging wings, PhD thesis, Department of Mechanical & Aerospace Engineering, Missouri University of Science and Technology, Rolla, Missouri, 2009.

[65] B.G. Newman; S.B. Savage; D. Schouelia Model test on a wing section of a dragonfly in scale effects in animal locomotion (T.J. Pedley, ed.), Scale Effects in Animal Locomotion, Academic Press, London, UK, 1977, pp. 445-477

[66] A.L.R. Thomas; G.K. Taylor; R.B. Srygley; R.L. Nudds; R.J. Bomphrey Dragonfly flight: free-flight and tethered flow visualizations reveal a diverse array of unsteady liftgenerating mechanisms, controlled primarily via angle of attack, J. Expl. Biol., Volume 207 (2004), pp. 4299-4323

[67] J.T. Murphy; H. Hu An experimental study of a bio-inspired corrugated airfoil for micro air vehicle applications, Exp. Fluids, Volume 49 (2010), pp. 531-546

[68] J.K. Shang; S.A. Combes; B.M. Finio; R.J. Wood Artificial insect wings of diverse morphology for flapping-wing micro air vehicles, Bioinspir. Biomim., Volume 4 (2009), p. 036002

[69] H. Tanaka; K. Matsumoto; I. Shimoyama Fabrication of a three-dimensional insect–wing model by micromolding of thermosetting resin with a thin elastmeric mold, J. Micromech. Microeng., Volume 17 (2007), pp. 2485-2490

[70] K.N. Shivakumar, S. Lingaiah, Ultra lightweight materials for bio-inspired microsystems, in: T. Ishikawa (Ed.), Proceedings of 16th International Conference on Composite Materials (ICCM-16), Kyoto, Japan, July 8–13, 2007.

[71] D.E. Levy; A. Seifert Simplified dragonfly airfoil aerodynamics at Reynolds numbers below 8000, Phys. Fluids, Volume 21 (2009), p. 071901

[72] H. Tanaka; R.J. Wood Fabrication of corrugated artificial insect wings using laser micromachined molds, J. Micromech. Microeng., Volume 20 (2010), p. 075008

[73] K. Tsuyuki; S. Sudo; J. Tani Morphology of insect wings and airflow produced by flapping insects, J. Intell. Mater. Syst. Struct., Volume 17 (2006), pp. 743-751

Cited by Sources:

Comments - Policy