Comptes Rendus
Biomimetic bluff body drag reduction by self-adaptive porous flaps
Comptes Rendus. Mécanique, Biomimetic flow control, Volume 340 (2012) no. 1-2, pp. 81-94.

The performances of an original passive control system based on a biomimetic approach are assessed by investigating the flow over a bluff body. This control device consists of a couple of flaps made from the combination of a rigid plastic skeleton coated with a porous fabric mimicking the shaft and the vane of the birdʼs feathers, respectively. The sides of a square cylinder have been fitted with this system so that each flap can freely rotate around its leading edge. This feature allows the movable flaps to self-adapt to the flow conditions. Comparing both the uncontrolled and the controlled flow, a significant drag reduction (22% on average) has been obtained over a broad range of Reynolds numbers. This improvement is related to the increase of the base pressure in the controlled case. The investigation of the mean flow reveals a noticeable modification of the flow topology at large scale in the vicinity of the controlled cylinder. Meanwhile, the study of the relative motion of both flaps highlights that their dynamics is sensitive to the Reynolds number. Furthermore, the analysis of the flow dynamics at large scale suggests a lock-in coupling between the flap motion and the vortex shedding.

Publié le :
DOI : 10.1016/j.crme.2011.11.006
Mots-clés : Aerodynamics, Drag reduction, Flow separation, Passive control, Biomimetism

Nicolas Mazellier 1 ; Audrey Feuvrier 1 ; Azeddine Kourta 1

1 Laboratoire PRISME, Université dʼOrléans, 8 rue Léonard de Vinci, 45072 Orléans cedex 2, France
@article{CRMECA_2012__340_1-2_81_0,
     author = {Nicolas Mazellier and Audrey Feuvrier and Azeddine Kourta},
     title = {Biomimetic bluff body drag reduction by self-adaptive porous flaps},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {81--94},
     publisher = {Elsevier},
     volume = {340},
     number = {1-2},
     year = {2012},
     doi = {10.1016/j.crme.2011.11.006},
     language = {en},
}
TY  - JOUR
AU  - Nicolas Mazellier
AU  - Audrey Feuvrier
AU  - Azeddine Kourta
TI  - Biomimetic bluff body drag reduction by self-adaptive porous flaps
JO  - Comptes Rendus. Mécanique
PY  - 2012
SP  - 81
EP  - 94
VL  - 340
IS  - 1-2
PB  - Elsevier
DO  - 10.1016/j.crme.2011.11.006
LA  - en
ID  - CRMECA_2012__340_1-2_81_0
ER  - 
%0 Journal Article
%A Nicolas Mazellier
%A Audrey Feuvrier
%A Azeddine Kourta
%T Biomimetic bluff body drag reduction by self-adaptive porous flaps
%J Comptes Rendus. Mécanique
%D 2012
%P 81-94
%V 340
%N 1-2
%I Elsevier
%R 10.1016/j.crme.2011.11.006
%G en
%F CRMECA_2012__340_1-2_81_0
Nicolas Mazellier; Audrey Feuvrier; Azeddine Kourta. Biomimetic bluff body drag reduction by self-adaptive porous flaps. Comptes Rendus. Mécanique, Biomimetic flow control, Volume 340 (2012) no. 1-2, pp. 81-94. doi : 10.1016/j.crme.2011.11.006. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2011.11.006/

[1] M. Gad-el Hak Flow Control: Passive, Active and Reactive Flow Management, Cambridge University Press, London, 2000

[2] H. Choi; W.P. Jeon; J. Kim Control of flow over a bluff body, Ann. Rev. Fluid Mech., Volume 40 (2008), pp. 113-139

[3] P.W. Bearman; J.C. Owen Reduction of bluff-body drag and suppression of vortex shedding by the introduction of wavy separation lines, J. Fluids Struct., Volume 12 (1998), pp. 123-130

[4] J.C. Owen; P.W. Bearman; A.A. Szewczyk Passive control of VIV with drag reduction, J. Fluids Struct., Volume 15 (2001), pp. 597-605

[5] C.P. Shao; Q.D. Wei Control of vortex shedding from a square cylinder, AIAA J., Volume 46 (2008), pp. 397-407

[6] C.H. Bruneau; I. Mortazavi Passive control of the flow around a square cylinder using porous media, Int. J. Numer. Meth. Fluids, Volume 46 (2004), pp. 415-433

[7] E. Stanewsky Adaptive wing and flow control technology, Prog. Aerosp. Sci., Volume 37 (2001), pp. 583-667

[8] M.H. Dickinson; F.O. Lehmann; S.P. Sane Wing rotation and the aerodynamic basis of insect flight, Science, Volume 284 (1999), pp. 1954-1960

[9] R. Vepa, Biomimetic flight and flow control: learning from the birds, in: IUTAM Symposium on Flow Control and MEMS, 2008, pp. 443–447.

[10] G.K. Taylor; R.L. Nudds; A.L.R. Thomas Flying and swimming animals cruise at Strouhal number tuned for high power efficiency, Nature, Volume 425 (2003), pp. 707-711

[11] M.S. Triantafyllou; G.S. Triantafyllou; R. Gopalkrishnan Wake mechanics for thrust generation in oscillating foils, Phys. Fluids A, Volume 3 (1991), pp. 2835-2837

[12] F.P. Gosselin; E. de Langre; B.A. Machado-Almeida Drag reduction of flexible plates by reconfiguration, J. Fluid Mech., Volume 650 (2010), pp. 319-341

[13] F.E. Fish; G.V. Lauder Passive and active flow control by swimming fishes and mammals, Ann. Rev. Fluid Mech., Volume 38 (2006), pp. 193-224 (247–266)

[14] D.W. Bechert; M. Bruse; W. Hage; R. Meyer Fluid mechanics of biological surfaces and their technological application, Naturwissenchaften, Volume 87 (2000), pp. 157-171

[15] M.S. Triantafyllou; A.H. Techet; F.S. Hover Review of experimental work in biomimetic foils, IEEE J. Oceanic Eng., Volume 29 (2004), pp. 585-594

[16] S. Alben; M. Shelley; J. Zhang Drag reduction through self-similar bending of a flexible body, Nature, Volume 420 (2002), pp. 479-481

[17] J. Favier; A. Dauptain; A. Basso; A. Bottaro Passive separation control using a self-adaptive hairy coating, J. Fluid Mech., Volume 627 (2009), pp. 451-483

[18] F.P. Gosselin; E. de Langre Drag reduction by reconfiguration of a poroelastic system, J. Fluids Struct., Volume 27 (2011), pp. 1111-1123

[19] W. Liebe Der Auftrieb am Tragfügel: Entstehung und Zusammenbruch, Aerokurier, Volume 12 (1979), pp. 1520-1523

[20] M. Schatz, T. Knacke, F. Thiele, R. Meyer, W. Hage, D.W. Bechert, Separation control by self-activated movable flaps, AIAA Paper 1243-2004, Reno, 2004.

[21] D.A. Lyn; W. Rodi The flapping shear layer formed by flow separation from the forward corner of a square cylinder, J. Fluid Mech., Volume 261 (1994), pp. 353-376

[22] A. Roshko On the wake and drag of bluff bodies, J. Aerosp. Sci., Volume 22 (1955), pp. 124-132

[23] C. Norberg Flow around rectangular cylinders: pressure forces and wake frequencies, J. Wind Eng. Ind. Aero., Volume 49 (1993), pp. 187-196

[24] P.W. Bearman; E.D. Obasaju An experimental study of pressure fluctuations on fixed and oscillating square-section cylinders, J. Fluid Mech., Volume 119 (1982), pp. 297-321

[25] E. de Langre Frequency lock-in is caused by coupled-mode flutter, J. Fluids Struct., Volume 22 (2006), pp. 783-791

[26] T.L. Morse; C.H.K. Williamson Prediction of vortex-induced vibration response by employing controlled motion, J. Fluid Mech., Volume 634 (2009), pp. 5-39

[27] M. Pastoor; L. Henning; B.R. Noack; R. King; G. Tadmor Feedback shear layer control for bluff body drag reduction, J. Fluid Mech., Volume 608 (2008), pp. 161-196

[28] N. Mazellier, A. Kourta, Amélioration des performances aérodynamiques dʼun profil au moyen dʼun actionneur passif auto-adaptatif, in: Proceedings of the 20th Congrès Français de Mécanique, Besançon, France, 2011.

[29] E.M. Laws; J.L. Livesey Flow through screens, Ann. Rev. Fluid Mech., Volume 10 (1978), pp. 247-266

[30] J. Groth; A.V. Johansson Turbulence reduction by screens, J. Fluid Mech., Volume 197 (1988), pp. 139-155

[31] E.C. Maskell, A theory of the blockage effects on bluff bodies and stalled wings in a closed wind tunnel, R.A.E. Aero. Rep. No. 2685, 1963.

  • Caiping Jin; Jingxin Zhang Forced motion modes of a patch of flexible rods in open channel flows, Physics of Fluids, Volume 37 (2025) no. 2 | DOI:10.1063/5.0252029
  • Mario A. Aguirre-López; Filiberto Hueyotl-Zahuantitla; Pedro Martínez-Vázquez; José Ulises Márquez-Urbina Passive Control of the Flow Around a Rectangular Cylinder with a Custom Rough Surface, Fluids, Volume 9 (2024) no. 11, p. 253 | DOI:10.3390/fluids9110253
  • Azeddine Kourta; Nicolas Mazellier Mean drag reduction of a square cylinder using self-adaptive flaps, Journal of Fluids and Structures, Volume 124 (2024), p. 104054 | DOI:10.1016/j.jfluidstructs.2023.104054
  • Jinyu Li; Koji Nagata; Tomoaki Watanabe Large-Eddy Simulation of Low-Reynolds-Number Flow Around Partially Porous Airfoils, Journal of Aircraft, Volume 60 (2023) no. 6, p. 1998 | DOI:10.2514/1.c037253
  • C. García-Baena; J.M. Camacho-Sánchez; M. Lorite-Díez; C. Gutiérrez-Montes; J.I. Jiménez-González Drag reduction on a blunt body by self-adaption of rear flexibly hinged flaps, Journal of Fluids and Structures, Volume 118 (2023), p. 103854 | DOI:10.1016/j.jfluidstructs.2023.103854
  • J. M. Camacho-Sánchez; M. Lorite-Díez; J. I. Jiménez-González; O. Cadot; C. Martínez-Bazán Experimental study on the effect of adaptive flaps on the aerodynamics of an Ahmed body, Physical Review Fluids, Volume 8 (2023) no. 4 | DOI:10.1103/physrevfluids.8.044605
  • Mario A. Aguirre-López; Filiberto Hueyotl-Zahuantitla; Pedro Martínez-Vázquez Advances in Numerical Data Visualization of Flow around a Square Cylinder, Symmetry, Volume 16 (2023) no. 1, p. 32 | DOI:10.3390/sym16010032
  • Joseph O’Connor; Alistair Revell Dynamic Response of Wall-Mounted Flaps in an Oscillating Crossflow, Advances in Critical Flow Dynamics Involving Moving/Deformable Structures with Design Applications, Volume 147 (2021), p. 479 | DOI:10.1007/978-3-030-55594-8_39
  • Mohsen Gorakifard; Ildefonso Cuesta; Clara Salueña; Ehsan Kian Far Acoustic wave propagation and its application to fluid structure interaction using the Cumulant Lattice Boltzmann Method, Computers Mathematics with Applications, Volume 87 (2021), p. 91 | DOI:10.1016/j.camwa.2021.02.011
  • Yuta Murayama; Toshiyuki Nakata; Hao Liu Flexible Flaps Inspired by Avian Feathers Can Enhance Aerodynamic Robustness in low Reynolds Number Airfoils, Frontiers in Bioengineering and Biotechnology, Volume 9 (2021) | DOI:10.3389/fbioe.2021.612182
  • C. García-Baena; J. I. Jiménez-González; C. Martínez-Bazán Drag reduction of a blunt body through reconfiguration of rear flexible plates, Physics of Fluids, Volume 33 (2021) no. 4 | DOI:10.1063/5.0046437
  • Chedhli Hafien; Talel Ben Mbarek Reduced order model for the lift coefficient of an airfoil equipped with extrados and/or trailing edge flexible flaps, Computers Fluids, Volume 180 (2019), p. 82 | DOI:10.1016/j.compfluid.2018.11.029
  • Joseph O’Connor; Alistair Revell Dynamic interactions of multiple wall-mounted flexible flaps, Journal of Fluid Mechanics, Volume 870 (2019), p. 189 | DOI:10.1017/jfm.2019.266
  • Yi Jin; Zhongyu Cheng; Xingsi Han; Junkui Mao; Feng Jin VLES of drag reduction for high Reynolds number flow past a square cylinder based on OpenFOAM, Ocean Engineering, Volume 190 (2019), p. 106450 | DOI:10.1016/j.oceaneng.2019.106450
  • Amit Soni; Shaligram Tiwari Three-dimensional numerical study on aerodynamics of non-flapping bird flight, Sādhanā, Volume 44 (2019) no. 2 | DOI:10.1007/s12046-018-1018-4
  • Ankush Raina; G.A. Harmain; Mir Irfan Ul Haq Numerical investigation of flow around a 3D bluff body using deflector plate, International Journal of Mechanical Sciences, Volume 131-132 (2017), p. 701 | DOI:10.1016/j.ijmecsci.2017.08.018
  • Dongri Kim; Hoon Lee; Wook Yi; Haecheon Choi A bio-inspired device for drag reduction on a three-dimensional model vehicle, Bioinspiration Biomimetics, Volume 11 (2016) no. 2, p. 026004 | DOI:10.1088/1748-3190/11/2/026004

Cité par 17 documents. Sources : Crossref

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: