Comptes Rendus
Biomimetic spiroid winglets for lift and drag control
Comptes Rendus. Mécanique, Biomimetic flow control, Volume 340 (2012) no. 1-2, pp. 67-80.

In aeronautical engineering, drag reduction constitutes a challenge and there is room for improvement and innovative developments. The drag breakdown of a typical transport aircraft shows that the lift-induced drag can amount to as much as 40% of the total drag at cruise conditions and 80–90% of the total drag in take-off configuration. One way of reducing lift-induced drag is by using wingtip devices. By applying biomimetic abstraction of the principle behind a birdʼs wingtip feathers, we study spiroid wingtips, which look like an extended blended wingtip that bends upward by 360 degrees to form a large rigid ribbon. The numerical investigation of such a wingtip device is described and preliminary indications of its aerodynamic performance are provided.

Publié le :
DOI : 10.1016/j.crme.2011.11.007
Keywords: Computational fluid mechanics, Spiroid winglets, Lift-induced drag, Drag reduction, Biomimetics

Joel E. Guerrero 1 ; Dario Maestro 1 ; Alessandro Bottaro 1

1 University of Genoa, Department of Civil, Environmental and Architectural Engineering, DICAT, Via Montallegro 1, 16145 Genoa, Italy
@article{CRMECA_2012__340_1-2_67_0,
     author = {Joel E. Guerrero and Dario Maestro and Alessandro Bottaro},
     title = {Biomimetic spiroid winglets for lift and drag control},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {67--80},
     publisher = {Elsevier},
     volume = {340},
     number = {1-2},
     year = {2012},
     doi = {10.1016/j.crme.2011.11.007},
     language = {en},
}
TY  - JOUR
AU  - Joel E. Guerrero
AU  - Dario Maestro
AU  - Alessandro Bottaro
TI  - Biomimetic spiroid winglets for lift and drag control
JO  - Comptes Rendus. Mécanique
PY  - 2012
SP  - 67
EP  - 80
VL  - 340
IS  - 1-2
PB  - Elsevier
DO  - 10.1016/j.crme.2011.11.007
LA  - en
ID  - CRMECA_2012__340_1-2_67_0
ER  - 
%0 Journal Article
%A Joel E. Guerrero
%A Dario Maestro
%A Alessandro Bottaro
%T Biomimetic spiroid winglets for lift and drag control
%J Comptes Rendus. Mécanique
%D 2012
%P 67-80
%V 340
%N 1-2
%I Elsevier
%R 10.1016/j.crme.2011.11.007
%G en
%F CRMECA_2012__340_1-2_67_0
Joel E. Guerrero; Dario Maestro; Alessandro Bottaro. Biomimetic spiroid winglets for lift and drag control. Comptes Rendus. Mécanique, Biomimetic flow control, Volume 340 (2012) no. 1-2, pp. 67-80. doi : 10.1016/j.crme.2011.11.007. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2011.11.007/

[1] J. Jupp Wing aerodynamics and the science of compromise, Aeronautical Journal, Volume 105 ( November 2001 ) no. 1053, pp. 633-641

[2] J.R. Chambers, Concept to reality: Contributions of the Langley Research Center to U.S. Civil Aircraft of the 1990s, NASA History Series, NASA SP-2003-4529, 2003.

[3] Assessment of Wingtip Modifications to Increase the Fuel Efficiency of Air Force Aircraft, Committee on Assessment of Aircraft Winglets for Large Aircraft Fuel Efficiency, Air Force Studies Board Division on Engineering and Physical Sciences, The National Academies Press, 2007

[4] R. Faye, R. Laprete, M. Winter, Blended winglets, M. Aero, No. 17, Boeing, January 2002.

[5] V.A. Tucker Drag reduction by wing tip slots in a gliding Harris Hawk, Parabuteo Unicinctus, J. Exp. Biol., Volume 198 (1995), pp. 775-781

[6] A. Hossain; A. Rahman; A. Iqbal; M. Ariffin; M. Mazian Drag analysis of an aircraft wing model with and without bird feather like winglet, Int. J. Aeros. Mech. Eng., Volume 6 (2012) no. 1, pp. 8-13

[7] J. Spillman The use of wing tip sails to reduce vortex drag, Aeronaut. J., Volume 82 (1978), pp. 387-395

[8] D.S. Miklosovic Analytic and experimental investigation of dihedral configurations of three-winglet planforms, J. Fluids Eng., Volume 130 ( July 2008 ) no. 7, p. 0711103/1-0711103/10

[9] L.B. Gratzer, Spiroid-tipped wing, U.S. Patent 5,102,068, 7 April 1992.

[10] I.C. Gebeshuber; M. Drack An attempt to reveal synergies between biology and mechanical engineering, Proc. Inst. Mech. Eng. C J. Mech. Eng., Volume 222 (2008) no. 7, pp. 1281-1287

[11] T. Wan, H.-C. Chou, K.-W. Lien, Aerodynamic efficiency study of modern spiroid winglets, in: 25th Congress of International Council of the Aeronautical, Sciences, September 2006, Germany, Paper ICAS 2006-3.7S.

[12] M. Nazarinia; M.R. Soltani; K. Ghorbanian Experimental study of vortex shapes behind a wing equipped with different winglets, Journal of Aerospace Science and Technology, Volume 3 (2006) no. 1, pp. 1-15

[13] OpenFOAM User Guide, OpenCFD Limited. Version 2.0.0, June 2011.

[14] P.K. Sweby High resolution schemes using flux limiters for hyperbolic conservation laws, SIAM J. Numer. Anal., Volume 21 (1984), pp. 995-1011

[15] J.H. Ferziger; M. Peric Computational Methods for Fluid Dynamics, Springer-Verlag, Berlin, 2001

[16] P.R. Spalart, S.R. Allmaras, A one-equation turbulence model for aerodynamic flows, AIAA Paper 92-0439-CP, 1992.

[17] R.T. Whitcomb, A design approach and selected wind-tunnel results at high subsonic speeds for wing-tip mounted winglets, NASA Technical Note, NASA TN D-8260, July 1976.

[18] M.D. Maughmer, The design of winglets for high-performance sailplanes, AIAA Paper 2001-2406-CP, 2001.

[19] R. Haines, D. Kenwright, On the velocity gradient tensor and fluid feature extraction, AIAA Paper 1999-3288-CP, 1999.

  • Smail Boughou; Ivan Batistic; Radouan Boukharfane; Ashraf Omar; Daniel J. Inman, AIAA SCITECH 2025 Forum (2025) | DOI:10.2514/6.2025-0283
  • Pol Suárez; Francisco Alcántara-Ávila; Jean Rabault; Arnau Miró; Bernat Font; Oriol Lehmkuhl; Ricardo Vinuesa Flow control of three-dimensional cylinders transitioning to turbulence via multi-agent reinforcement learning, Communications Engineering, Volume 4 (2025) no. 1 | DOI:10.1038/s44172-025-00446-x
  • Dhanya Prakash R. Babu; D. Madhesh; Inamul Hasan; R. Mukesh Evaluation of traditional and slotted winglets for enhanced aerodynamic efficiency, Physics of Fluids, Volume 37 (2025) no. 2 | DOI:10.1063/5.0252472
  • Vigneswaran C. M.; Mohamed Hussain Triangular and semi-circular serrations in raked winglets: Numerical analysis of vortex dynamics and drag control, Physics of Fluids, Volume 37 (2025) no. 3 | DOI:10.1063/5.0260790
  • Aman Jha; Aman Ayush; Arun Kumar; M. Zunaid, RECENT ADVANCEMENTS IN ARTIFICIAL INTELLIGENCE AND ITS APPLICATIONS IN ENGINEERING, Volume 3233 (2025), p. 020011 | DOI:10.1063/5.0235198
  • Aniket Patel; Uma Rai; Yug Patel; Parth Sathavara; Ajit Kumar Parwani, 4TH SYMPOSIUM ON INDUSTRIAL SCIENCE AND TECHNOLOGY (SISTEC2022), Volume 3023 (2024), p. 040007 | DOI:10.1063/5.0182996
  • Naruhiko Nimura; Akira Oyama, AIAA SCITECH 2024 Forum (2024) | DOI:10.2514/6.2024-2504
  • Piotr Kamiński; Paweł Niegodajew; Artur Dróżdż; Vasyl Sokolenko; Artur Tyliszczak; Witold Elsner Numerical analysis of novel wavy wall based control of turbulent boundary layer separation, Aerospace Science and Technology, Volume 149 (2024), p. 109167 | DOI:10.1016/j.ast.2024.109167
  • Farzaneh Omidvarnia; Ali Sarhadi Nature-Inspired Designs in Wind Energy: A Review, Biomimetics, Volume 9 (2024) no. 2, p. 90 | DOI:10.3390/biomimetics9020090
  • Anand Verma; Vinayak Kulkarni Exploration of bio-inspired wingtip devices for low aspect ratio wing, Engineering Research Express, Volume 6 (2024) no. 4, p. 045558 | DOI:10.1088/2631-8695/ad937d
  • Faheem Ahmed; Xianbo Xiang; Haotian Wang; Gong Xiang; Shaolong Yang CFD-Based Lift and Drag Estimations of a Novel Flight-Style AUV with Bow-Wings: Insights from Drag Polar Curves and Thrust Estimations, Journal of Marine Science and Application, Volume 23 (2024) no. 2, p. 352 | DOI:10.1007/s11804-024-00420-7
  • K. RahnamayBahambary; A. E. Komrakova; B. A. Fleck Unsteady numerical simulation of wind turbine with bio-inspired wing-tip modification, Physics of Fluids, Volume 36 (2024) no. 7 | DOI:10.1063/5.0214081
  • Mohammad Hossein Moghimi Esfandabadi; Hani Attar; Kamyab Karbasishargh; Mohammad Hasan Javareshakian; Seyed Vahid Ghasemi; Mohammad Mahdi Moghimi, 2023 2nd International Engineering Conference on Electrical, Energy, and Artificial Intelligence (EICEEAI) (2023), p. 1 | DOI:10.1109/eiceeai60672.2023.10590150
  • Ali J. Al-Khafaji; G. S. Panatov; A. S. Boldyrev, 4TH INTERNATIONAL SCIENTIFIC CONFERENCE OF ENGINEERING SCIENCES AND ADVANCES TECHNOLOGIES, Volume 2830 (2023), p. 070021 | DOI:10.1063/5.0156930
  • Dan Liu; Jiaao Cheng; Bifeng Song; Wenqing Yang; Dong Xue Numerical investigation of non-planarity and relative motion for bionic slotted wings, AIP Advances, Volume 13 (2023) no. 8 | DOI:10.1063/5.0156163
  • Yousef Gharbia; Javad Farrokhi Derakhshandeh; Md. Mahbub Alam; A. M. Amer Developments in Wingtip Vorticity Mitigation Techniques: A Comprehensive Review, Aerospace, Volume 11 (2023) no. 1, p. 36 | DOI:10.3390/aerospace11010036
  • Reza Afshari; S.M.H. Karimian A new blade tip geometry to improve aerodynamic performance and acoustic noise of helicopter blade in hovering flight, Aerospace Science and Technology, Volume 135 (2023), p. 108197 | DOI:10.1016/j.ast.2023.108197
  • Ángel Antonio Rodríguez-Sevillano; Rafael Bardera-Mora; Alejandra López-Cuervo-Alcaraz; Daniel Anguita-Mazón; Juan Carlos Matías-García; Estela Barroso-Barderas; Jaime Fernández-Antón Automation of Winglet Wings Geometry Generation for Its Application in TORNADO, Algorithms, Volume 16 (2023) no. 9, p. 439 | DOI:10.3390/a16090439
  • Zhihao Zhang; Limin Kuang; Zhaolong Han; Dai Zhou; Yongsheng Zhao; Yan Bao; Lei Duan; Jiahuang Tu; Yaoran Chen; Mingsheng Chen Comparative analysis of bent and basic winglets on performance improvement of horizontal axis wind turbines, Energy, Volume 281 (2023), p. 128252 | DOI:10.1016/j.energy.2023.128252
  • Elisabeth Banken; Johannes Oeffner Biomimetics for innovative and future-oriented space applications - A review, Frontiers in Space Technologies, Volume 3 (2023) | DOI:10.3389/frspt.2022.1000788
  • S. Delbecq; J. Fontane; N. Gourdain; T. Planès; F. Simatos Sustainable aviation in the context of the Paris Agreement: A review of prospective scenarios and their technological mitigation levers, Progress in Aerospace Sciences, Volume 141 (2023), p. 100920 | DOI:10.1016/j.paerosci.2023.100920
  • Nikola Gavrilović; Boško Rašuo; Vladimir Parezanović; George Dulikravich; Jean‐Marc Moschetta Overall Contribution of Wingtip Devices to Improving Aircraft Performance, Sustainable Aviation Technology and Operations (2023), p. 323 | DOI:10.1002/9781118932599.ch12
  • Anupam Krishnan; Abdulkareem Sh. Mahdi Al-Obaidi; Lee Ching Hao A comprehensive review of innovative wind turbine airfoil and blade designs: Toward enhanced efficiency and sustainability, Sustainable Energy Technologies and Assessments, Volume 60 (2023), p. 103511 | DOI:10.1016/j.seta.2023.103511
  • Pascal Gehlert; Kshitij Sabnis; Holger Babinsky, AIAA SCITECH 2022 Forum (2022) | DOI:10.2514/6.2022-1961
  • V. Madhan Raj; Dilip A. Shah; P. Boomadevi Preliminary investigation on the effects of folding wingtips on the aerodynamics characteristics of flexible aircraft, International Journal of Ambient Energy, Volume 43 (2022) no. 1, p. 362 | DOI:10.1080/01430750.2019.1636882
  • Hariprasad Thimmegowda; Yadu Krishnan S; Gisa G S; Vootukuri Gowtham Reddy Parametric Study of Fluid Injection Winglet on Aerodynamic Performance of the Wing, Journal of Fluid Flow, Heat and Mass Transfer (2022) | DOI:10.11159/jffhmt.2022.003
  • Robert Blasiak; Jean-Baptiste Jouffray; Diva J Amon; Fredrik Moberg; Joachim Claudet; Peter Søgaard Jørgensen; Agnes Pranindita; Colette C C Wabnitz; Henrik Österblom; Karen E Nelson A forgotten element of the blue economy: marine biomimetics and inspiration from the deep sea, PNAS Nexus, Volume 1 (2022) no. 4 | DOI:10.1093/pnasnexus/pgac196
  • X. Chen; J. Liu; Q. Li The smart morphing winglet driven by the piezoelectric Macro Fiber Composite actuator, The Aeronautical Journal, Volume 126 (2022) no. 1299, p. 830 | DOI:10.1017/aer.2021.106
  • Masoud Heidari Soreshjani; Alireza Jahangirian An investigation on winglet design with limited computational cost, using an efficient optimization method, Aerospace Science and Technology, Volume 117 (2021), p. 106957 | DOI:10.1016/j.ast.2021.106957
  • Valentina Perricone; Carlo Santulli; Francesco Rendina; Carla Langella Organismal Design and Biomimetics: A Problem of Scale, Biomimetics, Volume 6 (2021) no. 4, p. 56 | DOI:10.3390/biomimetics6040056
  • Xiaolong He; Zheng Chen; Jie Tan Aerodynamic Design of Wingtip Devices Using Far-field Drag Decomposition, IOP Conference Series: Materials Science and Engineering, Volume 1102 (2021) no. 1, p. 012003 | DOI:10.1088/1757-899x/1102/1/012003
  • Dan Liu; Bifeng Song; Wenqing Yang; Xiaojun Yang; Dong Xue; Xinyu Lang A Brief Review on Aerodynamic Performance of Wingtip Slots and Research Prospect, Journal of Bionic Engineering, Volume 18 (2021) no. 6, p. 1255 | DOI:10.1007/s42235-021-00116-6
  • Zhe Hui; Gui Cheng; Gang Chen Experimental investigation on tip-vortex flow characteristics of novel bionic multi-tip winglet configurations, Physics of Fluids, Volume 33 (2021) no. 1 | DOI:10.1063/5.0036369
  • Igor F. Kravchenko; Vasyl V. Loginov; Yevgene O. Ukrainets; Pavlo A. Hlushchenko Aerodynamic Characteristics of a Straight Wing with a Spiroid Wingtip Device, Transactions on Aerospace Research, Volume 2021 (2021) no. 2, p. 46 | DOI:10.2478/tar-2021-0010
  • Behrouz Fathi Applying Spiroid Winglet on The Tip of NREL 5 MW Offshore Wind Turbine’s Blade to Investigate Vortex Effects, E3S Web of Conferences, Volume 197 (2020), p. 08004 | DOI:10.1051/e3sconf/202019708004
  • Chirag Goyal; AI Ameen Hassan; Sivasubramaniam Bavanitha; R. Sarweswaran WITHDRAWN: Aerodynamic effects of folding wingtips, Materials Today: Proceedings (2020) | DOI:10.1016/j.matpr.2020.08.051
  • J. E. Guerrero; M. Sanguineti; K. Wittkowski Variable cant angle winglets for improvement of aircraft flight performance, Meccanica, Volume 55 (2020) no. 10, p. 1917 | DOI:10.1007/s11012-020-01230-1
  • Hüseyin Şahin; Tuğrul OKTAY Başkalaşan Kanat Ucu Tasarımı ve Avantajları, European Journal of Science and Technology (2019), p. 606 | DOI:10.31590/ejosat.634822
  • Karthick Dhileep; S. Arunvinthan; S. Nadaraja Pillai Aerodynamic Characteristics of Semi-spiroid Winglets at Subsonic Speed, Innovative Design, Analysis and Development Practices in Aerospace and Automotive Engineering (I-DAD 2018) (2019), p. 217 | DOI:10.1007/978-981-13-2718-6_20
  • Eliot Graeff; Nicolas Maranzana; Améziane Aoussat Biomimetics, where are the biologists?, Journal of Engineering Design, Volume 30 (2019) no. 8-9, p. 289 | DOI:10.1080/09544828.2019.1642462
  • Amit Soni; Shaligram Tiwari Three-dimensional numerical study on aerodynamics of non-flapping bird flight, Sādhanā, Volume 44 (2019) no. 2 | DOI:10.1007/s12046-018-1018-4
  • Michael Lynch; Boris Mandadzhiev; Aimy Wissa Bioinspired wingtip devices: a pathway to improve aerodynamic performance during low Reynolds number flight, Bioinspiration Biomimetics, Volume 13 (2018) no. 3, p. 036003 | DOI:10.1088/1748-3190/aaac53
  • August G. Domel; Mehdi Saadat; James C. Weaver; Hossein Haj-Hariri; Katia Bertoldi; George V. Lauder Shark skin-inspired designs that improve aerodynamic performance, Journal of The Royal Society Interface, Volume 15 (2018) no. 139, p. 20170828 | DOI:10.1098/rsif.2017.0828
  • José M. Cansino; Rocío Román Energy efficiency improvements in air traffic: The case of Airbus A320 in Spain, Energy Policy, Volume 101 (2017), p. 109 | DOI:10.1016/j.enpol.2016.11.027
  • Marouen Dghim; Mohsen Ferchichi; Ruben E. Perez; Maher BenChiekh Near wake development of a wing tip vortex under the effect of synthetic jet actuation, Aerospace Science and Technology, Volume 54 (2016), p. 88 | DOI:10.1016/j.ast.2016.04.008
  • Gautham Narayan; Bibin John Effect of winglets induced tip vortex structure on the performance of subsonic wings, Aerospace Science and Technology, Volume 58 (2016), p. 328 | DOI:10.1016/j.ast.2016.08.031
  • Min-Woo Han; Hugo Rodrigue; Hyung-Il Kim; Sung-Hyuk Song; Sung-Hoon Ahn Shape memory alloy/glass fiber woven composite for soft morphing winglets of unmanned aerial vehicles, Composite Structures, Volume 140 (2016), p. 202 | DOI:10.1016/j.compstruct.2015.12.051
  • Yoshinobu Inada; Ryoya Saito Flutter Inhibition in a Bird-Inspired Reflection Wing, Journal of Aero Aqua Bio-mechanisms, Volume 4 (2015) no. 1, p. 44 | DOI:10.5226/jabmech.4.44
  • Yong-Jin Yoon; Seung Ki Moon; Jihong Hwang 3D printing as an efficient way for comparative study of biomimetic structures — trabecular bone and honeycomb, Journal of Mechanical Science and Technology, Volume 28 (2014) no. 11, p. 4635 | DOI:10.1007/s12206-014-1031-4

Cité par 49 documents. Sources : Crossref

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: