In aeronautical engineering, drag reduction constitutes a challenge and there is room for improvement and innovative developments. The drag breakdown of a typical transport aircraft shows that the lift-induced drag can amount to as much as 40% of the total drag at cruise conditions and 80–90% of the total drag in take-off configuration. One way of reducing lift-induced drag is by using wingtip devices. By applying biomimetic abstraction of the principle behind a birdʼs wingtip feathers, we study spiroid wingtips, which look like an extended blended wingtip that bends upward by 360 degrees to form a large rigid ribbon. The numerical investigation of such a wingtip device is described and preliminary indications of its aerodynamic performance are provided.
Joel E. Guerrero 1 ; Dario Maestro 1 ; Alessandro Bottaro 1
@article{CRMECA_2012__340_1-2_67_0, author = {Joel E. Guerrero and Dario Maestro and Alessandro Bottaro}, title = {Biomimetic spiroid winglets for lift and drag control}, journal = {Comptes Rendus. M\'ecanique}, pages = {67--80}, publisher = {Elsevier}, volume = {340}, number = {1-2}, year = {2012}, doi = {10.1016/j.crme.2011.11.007}, language = {en}, }
Joel E. Guerrero; Dario Maestro; Alessandro Bottaro. Biomimetic spiroid winglets for lift and drag control. Comptes Rendus. Mécanique, Biomimetic flow control, Volume 340 (2012) no. 1-2, pp. 67-80. doi : 10.1016/j.crme.2011.11.007. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2011.11.007/
[1] Wing aerodynamics and the science of compromise, Aeronautical Journal, Volume 105 ( November 2001 ) no. 1053, pp. 633-641
[2] J.R. Chambers, Concept to reality: Contributions of the Langley Research Center to U.S. Civil Aircraft of the 1990s, NASA History Series, NASA SP-2003-4529, 2003.
[3] Assessment of Wingtip Modifications to Increase the Fuel Efficiency of Air Force Aircraft, Committee on Assessment of Aircraft Winglets for Large Aircraft Fuel Efficiency, Air Force Studies Board Division on Engineering and Physical Sciences, The National Academies Press, 2007
[4] R. Faye, R. Laprete, M. Winter, Blended winglets, M. Aero, No. 17, Boeing, January 2002.
[5] Drag reduction by wing tip slots in a gliding Harris Hawk, Parabuteo Unicinctus, J. Exp. Biol., Volume 198 (1995), pp. 775-781
[6] Drag analysis of an aircraft wing model with and without bird feather like winglet, Int. J. Aeros. Mech. Eng., Volume 6 (2012) no. 1, pp. 8-13
[7] The use of wing tip sails to reduce vortex drag, Aeronaut. J., Volume 82 (1978), pp. 387-395
[8] Analytic and experimental investigation of dihedral configurations of three-winglet planforms, J. Fluids Eng., Volume 130 ( July 2008 ) no. 7, p. 0711103/1-0711103/10
[9] L.B. Gratzer, Spiroid-tipped wing, U.S. Patent 5,102,068, 7 April 1992.
[10] An attempt to reveal synergies between biology and mechanical engineering, Proc. Inst. Mech. Eng. C J. Mech. Eng., Volume 222 (2008) no. 7, pp. 1281-1287
[11] T. Wan, H.-C. Chou, K.-W. Lien, Aerodynamic efficiency study of modern spiroid winglets, in: 25th Congress of International Council of the Aeronautical, Sciences, September 2006, Germany, Paper ICAS 2006-3.7S.
[12] Experimental study of vortex shapes behind a wing equipped with different winglets, Journal of Aerospace Science and Technology, Volume 3 (2006) no. 1, pp. 1-15
[13] OpenFOAM User Guide, OpenCFD Limited. Version 2.0.0, June 2011.
[14] High resolution schemes using flux limiters for hyperbolic conservation laws, SIAM J. Numer. Anal., Volume 21 (1984), pp. 995-1011
[15] Computational Methods for Fluid Dynamics, Springer-Verlag, Berlin, 2001
[16] P.R. Spalart, S.R. Allmaras, A one-equation turbulence model for aerodynamic flows, AIAA Paper 92-0439-CP, 1992.
[17] R.T. Whitcomb, A design approach and selected wind-tunnel results at high subsonic speeds for wing-tip mounted winglets, NASA Technical Note, NASA TN D-8260, July 1976.
[18] M.D. Maughmer, The design of winglets for high-performance sailplanes, AIAA Paper 2001-2406-CP, 2001.
[19] R. Haines, D. Kenwright, On the velocity gradient tensor and fluid feature extraction, AIAA Paper 1999-3288-CP, 1999.
- , AIAA SCITECH 2025 Forum (2025) | DOI:10.2514/6.2025-0283
- Flow control of three-dimensional cylinders transitioning to turbulence via multi-agent reinforcement learning, Communications Engineering, Volume 4 (2025) no. 1 | DOI:10.1038/s44172-025-00446-x
- Evaluation of traditional and slotted winglets for enhanced aerodynamic efficiency, Physics of Fluids, Volume 37 (2025) no. 2 | DOI:10.1063/5.0252472
- Triangular and semi-circular serrations in raked winglets: Numerical analysis of vortex dynamics and drag control, Physics of Fluids, Volume 37 (2025) no. 3 | DOI:10.1063/5.0260790
- , RECENT ADVANCEMENTS IN ARTIFICIAL INTELLIGENCE AND ITS APPLICATIONS IN ENGINEERING, Volume 3233 (2025), p. 020011 | DOI:10.1063/5.0235198
- , 4TH SYMPOSIUM ON INDUSTRIAL SCIENCE AND TECHNOLOGY (SISTEC2022), Volume 3023 (2024), p. 040007 | DOI:10.1063/5.0182996
- , AIAA SCITECH 2024 Forum (2024) | DOI:10.2514/6.2024-2504
- Numerical analysis of novel wavy wall based control of turbulent boundary layer separation, Aerospace Science and Technology, Volume 149 (2024), p. 109167 | DOI:10.1016/j.ast.2024.109167
- Nature-Inspired Designs in Wind Energy: A Review, Biomimetics, Volume 9 (2024) no. 2, p. 90 | DOI:10.3390/biomimetics9020090
- Exploration of bio-inspired wingtip devices for low aspect ratio wing, Engineering Research Express, Volume 6 (2024) no. 4, p. 045558 | DOI:10.1088/2631-8695/ad937d
- CFD-Based Lift and Drag Estimations of a Novel Flight-Style AUV with Bow-Wings: Insights from Drag Polar Curves and Thrust Estimations, Journal of Marine Science and Application, Volume 23 (2024) no. 2, p. 352 | DOI:10.1007/s11804-024-00420-7
- Unsteady numerical simulation of wind turbine with bio-inspired wing-tip modification, Physics of Fluids, Volume 36 (2024) no. 7 | DOI:10.1063/5.0214081
- , 2023 2nd International Engineering Conference on Electrical, Energy, and Artificial Intelligence (EICEEAI) (2023), p. 1 | DOI:10.1109/eiceeai60672.2023.10590150
- , 4TH INTERNATIONAL SCIENTIFIC CONFERENCE OF ENGINEERING SCIENCES AND ADVANCES TECHNOLOGIES, Volume 2830 (2023), p. 070021 | DOI:10.1063/5.0156930
- Numerical investigation of non-planarity and relative motion for bionic slotted wings, AIP Advances, Volume 13 (2023) no. 8 | DOI:10.1063/5.0156163
- Developments in Wingtip Vorticity Mitigation Techniques: A Comprehensive Review, Aerospace, Volume 11 (2023) no. 1, p. 36 | DOI:10.3390/aerospace11010036
- A new blade tip geometry to improve aerodynamic performance and acoustic noise of helicopter blade in hovering flight, Aerospace Science and Technology, Volume 135 (2023), p. 108197 | DOI:10.1016/j.ast.2023.108197
- Automation of Winglet Wings Geometry Generation for Its Application in TORNADO, Algorithms, Volume 16 (2023) no. 9, p. 439 | DOI:10.3390/a16090439
- Comparative analysis of bent and basic winglets on performance improvement of horizontal axis wind turbines, Energy, Volume 281 (2023), p. 128252 | DOI:10.1016/j.energy.2023.128252
- Biomimetics for innovative and future-oriented space applications - A review, Frontiers in Space Technologies, Volume 3 (2023) | DOI:10.3389/frspt.2022.1000788
- Sustainable aviation in the context of the Paris Agreement: A review of prospective scenarios and their technological mitigation levers, Progress in Aerospace Sciences, Volume 141 (2023), p. 100920 | DOI:10.1016/j.paerosci.2023.100920
- Overall Contribution of Wingtip Devices to Improving Aircraft Performance, Sustainable Aviation Technology and Operations (2023), p. 323 | DOI:10.1002/9781118932599.ch12
- A comprehensive review of innovative wind turbine airfoil and blade designs: Toward enhanced efficiency and sustainability, Sustainable Energy Technologies and Assessments, Volume 60 (2023), p. 103511 | DOI:10.1016/j.seta.2023.103511
- , AIAA SCITECH 2022 Forum (2022) | DOI:10.2514/6.2022-1961
- Preliminary investigation on the effects of folding wingtips on the aerodynamics characteristics of flexible aircraft, International Journal of Ambient Energy, Volume 43 (2022) no. 1, p. 362 | DOI:10.1080/01430750.2019.1636882
- Parametric Study of Fluid Injection Winglet on Aerodynamic Performance of the Wing, Journal of Fluid Flow, Heat and Mass Transfer (2022) | DOI:10.11159/jffhmt.2022.003
- A forgotten element of the blue economy: marine biomimetics and inspiration from the deep sea, PNAS Nexus, Volume 1 (2022) no. 4 | DOI:10.1093/pnasnexus/pgac196
- The smart morphing winglet driven by the piezoelectric Macro Fiber Composite actuator, The Aeronautical Journal, Volume 126 (2022) no. 1299, p. 830 | DOI:10.1017/aer.2021.106
- An investigation on winglet design with limited computational cost, using an efficient optimization method, Aerospace Science and Technology, Volume 117 (2021), p. 106957 | DOI:10.1016/j.ast.2021.106957
- Organismal Design and Biomimetics: A Problem of Scale, Biomimetics, Volume 6 (2021) no. 4, p. 56 | DOI:10.3390/biomimetics6040056
- Aerodynamic Design of Wingtip Devices Using Far-field Drag Decomposition, IOP Conference Series: Materials Science and Engineering, Volume 1102 (2021) no. 1, p. 012003 | DOI:10.1088/1757-899x/1102/1/012003
- A Brief Review on Aerodynamic Performance of Wingtip Slots and Research Prospect, Journal of Bionic Engineering, Volume 18 (2021) no. 6, p. 1255 | DOI:10.1007/s42235-021-00116-6
- Experimental investigation on tip-vortex flow characteristics of novel bionic multi-tip winglet configurations, Physics of Fluids, Volume 33 (2021) no. 1 | DOI:10.1063/5.0036369
- Aerodynamic Characteristics of a Straight Wing with a Spiroid Wingtip Device, Transactions on Aerospace Research, Volume 2021 (2021) no. 2, p. 46 | DOI:10.2478/tar-2021-0010
- Applying Spiroid Winglet on The Tip of NREL 5 MW Offshore Wind Turbine’s Blade to Investigate Vortex Effects, E3S Web of Conferences, Volume 197 (2020), p. 08004 | DOI:10.1051/e3sconf/202019708004
- WITHDRAWN: Aerodynamic effects of folding wingtips, Materials Today: Proceedings (2020) | DOI:10.1016/j.matpr.2020.08.051
- Variable cant angle winglets for improvement of aircraft flight performance, Meccanica, Volume 55 (2020) no. 10, p. 1917 | DOI:10.1007/s11012-020-01230-1
- Başkalaşan Kanat Ucu Tasarımı ve Avantajları, European Journal of Science and Technology (2019), p. 606 | DOI:10.31590/ejosat.634822
- Aerodynamic Characteristics of Semi-spiroid Winglets at Subsonic Speed, Innovative Design, Analysis and Development Practices in Aerospace and Automotive Engineering (I-DAD 2018) (2019), p. 217 | DOI:10.1007/978-981-13-2718-6_20
- Biomimetics, where are the biologists?, Journal of Engineering Design, Volume 30 (2019) no. 8-9, p. 289 | DOI:10.1080/09544828.2019.1642462
- Three-dimensional numerical study on aerodynamics of non-flapping bird flight, Sādhanā, Volume 44 (2019) no. 2 | DOI:10.1007/s12046-018-1018-4
- Bioinspired wingtip devices: a pathway to improve aerodynamic performance during low Reynolds number flight, Bioinspiration Biomimetics, Volume 13 (2018) no. 3, p. 036003 | DOI:10.1088/1748-3190/aaac53
- Shark skin-inspired designs that improve aerodynamic performance, Journal of The Royal Society Interface, Volume 15 (2018) no. 139, p. 20170828 | DOI:10.1098/rsif.2017.0828
- Energy efficiency improvements in air traffic: The case of Airbus A320 in Spain, Energy Policy, Volume 101 (2017), p. 109 | DOI:10.1016/j.enpol.2016.11.027
- Near wake development of a wing tip vortex under the effect of synthetic jet actuation, Aerospace Science and Technology, Volume 54 (2016), p. 88 | DOI:10.1016/j.ast.2016.04.008
- Effect of winglets induced tip vortex structure on the performance of subsonic wings, Aerospace Science and Technology, Volume 58 (2016), p. 328 | DOI:10.1016/j.ast.2016.08.031
- Shape memory alloy/glass fiber woven composite for soft morphing winglets of unmanned aerial vehicles, Composite Structures, Volume 140 (2016), p. 202 | DOI:10.1016/j.compstruct.2015.12.051
- Flutter Inhibition in a Bird-Inspired Reflection Wing, Journal of Aero Aqua Bio-mechanisms, Volume 4 (2015) no. 1, p. 44 | DOI:10.5226/jabmech.4.44
- 3D printing as an efficient way for comparative study of biomimetic structures — trabecular bone and honeycomb, Journal of Mechanical Science and Technology, Volume 28 (2014) no. 11, p. 4635 | DOI:10.1007/s12206-014-1031-4
Cité par 49 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier