Comptes Rendus
Second order model in fluid film lubrication
Comptes Rendus. Mécanique, Volume 340 (2012) no. 8, pp. 596-601.

The goal of this Note is to derive the second order model correcting the standard Reynolds equation for fluid film lubrication. Starting from microscopic model described by the Stokes system, we compute an asymptotic expansion for the solution. Instead of computing only the first term, as in the standard Reynolds approximation, we keep first two terms leading to the corrected model. We obtain equations similar to the Brinkman model for porous medium flow.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2012.05.004
Keywords: Lubrication, Fluid film lubrication, Asymptotic analysis, Second order model

Eduard Marušić-Paloka 1; Igor Pažanin 1; Sanja Marušić 2

1 Department of Mathematics, Faculty of Science, University of Zagreb, Bijenička 30, 10000 Zagreb, Croatia
2 Faculty of Transport and Traffic Engineering, University of Zagreb, Vukelićeva 4, 10000 Zagreb, Croatia
@article{CRMECA_2012__340_8_596_0,
     author = {Eduard Maru\v{s}i\'c-Paloka and Igor Pa\v{z}anin and Sanja Maru\v{s}i\'c},
     title = {Second order model in fluid film lubrication},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {596--601},
     publisher = {Elsevier},
     volume = {340},
     number = {8},
     year = {2012},
     doi = {10.1016/j.crme.2012.05.004},
     language = {en},
}
TY  - JOUR
AU  - Eduard Marušić-Paloka
AU  - Igor Pažanin
AU  - Sanja Marušić
TI  - Second order model in fluid film lubrication
JO  - Comptes Rendus. Mécanique
PY  - 2012
SP  - 596
EP  - 601
VL  - 340
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crme.2012.05.004
LA  - en
ID  - CRMECA_2012__340_8_596_0
ER  - 
%0 Journal Article
%A Eduard Marušić-Paloka
%A Igor Pažanin
%A Sanja Marušić
%T Second order model in fluid film lubrication
%J Comptes Rendus. Mécanique
%D 2012
%P 596-601
%V 340
%N 8
%I Elsevier
%R 10.1016/j.crme.2012.05.004
%G en
%F CRMECA_2012__340_8_596_0
Eduard Marušić-Paloka; Igor Pažanin; Sanja Marušić. Second order model in fluid film lubrication. Comptes Rendus. Mécanique, Volume 340 (2012) no. 8, pp. 596-601. doi : 10.1016/j.crme.2012.05.004. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.05.004/

[1] O. Reynolds On the theory of lubrication and its applications to Mr. Beauchamp Towers experiments, including an experimental determination of the viscosity of olive oil, Philos. Trans. Roy. Soc. London, Volume 177 (1886), pp. 157-234

[2] G. Bayada; M. Chambat The transition between the Stokes equations and the Reynolds equation: A mathematical proof, Appl. Math. Opt., Volume 14 (1986), pp. 73-93

[3] S.A. Nazarov Asymptotic solution of the Navier–Stokes problem on the flow of a thin layer of fluid, Siberian Math. J., Volume 31 (1990), pp. 296-307

[4] E. Sanchez-Palencia On the asymptotics of the fluid flow past an array of fixed obstacles, Int. J. Eng. Sci., Volume 20 (1982), pp. 1291-1301

[5] J. Wilkening Practical error estimates for Reynoldsʼ lubrication approximation and its higher order corrections, SIAM J. Math. Anal., Volume 41 (2009), pp. 588-630

[6] H. Darcy Les fontaines publiques de la ville de Dijon, Victor Darmon, Paris, 1856

[7] H. Brinkman A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles, Appl. Sci. Res. A, Volume 1 (1947), pp. 27-34

[8] T. Levy Fluid flow through an array of fixed particles, Int. J. Eng. Sci., Volume 21 (1983), pp. 11-23

[9] G. Allaire Homogenization of the Navier–Stokes equations in open sets perforated with tiny holes I. Abstract framework, a volume distribution of holes, Arch. Rational. Mech. Anal., Volume 113 (1991), pp. 209-259

[10] J.L. Auriault; C. Geindreau; C. Boutin Filtration law in porous media with poor separation of scales, Transp. Porous Med., Volume 60 (2005), pp. 89-108

[11] E. Marušić-Paloka; I. Pažanin; S. Marušić Comparison between Darcy and Brinkman laws in a fracture, Appl. Math. Comput., Volume 218 (2012), pp. 7538-7545

[12] C. Conca; F. Murat; O. Pironneau The Stokes and Navier–Stokes equations with boundary conditions involving the pressure, Japan J. Math., Volume 20 (1994), pp. 263-318

[13] A. Duvnjak; E. Marušić-Paloka Derivation of the Reynolds equation for lubrication of a rotating shaft, Archivum Mat. (Brno), Volume 36 (2000), pp. 239-253

[14] S. Marušić; E. Marušić-Paloka Two-scale convergence for thin domains and its applications to some lower-dimensional models in fluid mechanics, Asymptotic Anal., Volume 23 (2000), pp. 23-58

Cited by Sources:

Comments - Policy