Comptes Rendus
Pipe flow of shear-thinning fluids
Comptes Rendus. Mécanique, Volume 340 (2012) no. 8, pp. 602-618.

Pipe flow of purely viscous shear-thinning fluids is studied using numerical simulations. The rheological behavior is described by the Carreau model. The flow field is decomposed as a base flow and a disturbance. The perturbation equations are then solved using a pseudo-spectral Petrov–Galerkin method. The time marching uses a fourth-order Adams–Bashforth scheme. In the case of an infinitesimal perturbation, a three-dimensional linear stability analysis is performed based on modal and non-modal approaches. It is shown that pipe flow of shear-thinning fluids is linearly stable and that for the range of rheological parameters considered, streamwise-independent vortices are optimally amplified. Nonlinear computations are done for finite amplitude two-dimensional disturbances, which consist of one pair of longitudinal rolls. The numerical results highlight a strong modification of the viscosity profile associated with the flow reorganization. For a given wall Reynolds number, shear-thinning reduces the energy gain of the perturbation. This is due to a reduction of the exchange energy between the base flow and the perturbation. Besides this, viscous dissipation decreases with increasing shear-thinning effects.

Lʼécoulement de fluides rhéofluidifiants en conduite cylindrique est étudié à lʼaide de simulations numériques. Le comportement rhéofluidifiant est modélisé par la loi de Carreau. Lʼécoulement est décomposé en un écoulement de base et une perturbation. Les équations aux perturbations sont résolues en utilisant une méthode pseudo-spectrale de Petrov–Galerkin. La discrétisation temporelle utilise un schéma dʼAdams–Bashforth dʼordre quatre. Dans le cas dʼune perturbation infinitésimale, une analyse linéaire tridimensionnelle est effectuée suivant une approche modale puis non-modale. Les résultats obtenus montrent que dans la gamme des paramètres rhéologiques considérés, lʼécoulement dʼun fluide rhéofluidifiant est linéairement stable. La perturbation optimale est constituée dʼune paire de rouleaux longitudinaux contra-rotatifs. Des simulations numériques non linéaires sont ensuite effectuées pour une perturbation bidimensionnelle dʼamplitude finie constituée dʼune paire de rouleaux longitudinaux. Les résultats numériques montrent que la réorganisation de lʼécoulement sʼaccompagne dʼune forte modification du profil de viscosité. En outre, pour une valeur donnée du nombre de Reynolds basé sur la viscosité pariétale, la rhéofluidification réduit lʼamplification de lʼénergie de la perturbation. On montre que cela est dû à la réduction des échanges dʼénergie entre lʼécoulement de base et la perturbation. Parallèlement à cela, la dissipation visqueuse décroit avec lʼaugmentation des effets rhéofluidifiants.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2012.05.002
Keywords: Instability, Pipe flow, Non-Newtonian fluids, Spectral methods
Mot clés : Instabilité, Écoulement en conduite cylindrique, Fluides non-Newtoniens, Méthodes spectrales

Santiago Nicolas López-Carranza 1; Mathieu Jenny 1; Chérif Nouar 1

1 LEMTA, université de Lorraine, CNRS UMR 7563, 2, avenue de la forêt de Haye, BP 160, 54504 Vandoeuvre lès Nancy, France
@article{CRMECA_2012__340_8_602_0,
     author = {Santiago Nicolas L\'opez-Carranza and Mathieu Jenny and Ch\'erif Nouar},
     title = {Pipe flow of shear-thinning fluids},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {602--618},
     publisher = {Elsevier},
     volume = {340},
     number = {8},
     year = {2012},
     doi = {10.1016/j.crme.2012.05.002},
     language = {en},
}
TY  - JOUR
AU  - Santiago Nicolas López-Carranza
AU  - Mathieu Jenny
AU  - Chérif Nouar
TI  - Pipe flow of shear-thinning fluids
JO  - Comptes Rendus. Mécanique
PY  - 2012
SP  - 602
EP  - 618
VL  - 340
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crme.2012.05.002
LA  - en
ID  - CRMECA_2012__340_8_602_0
ER  - 
%0 Journal Article
%A Santiago Nicolas López-Carranza
%A Mathieu Jenny
%A Chérif Nouar
%T Pipe flow of shear-thinning fluids
%J Comptes Rendus. Mécanique
%D 2012
%P 602-618
%V 340
%N 8
%I Elsevier
%R 10.1016/j.crme.2012.05.002
%G en
%F CRMECA_2012__340_8_602_0
Santiago Nicolas López-Carranza; Mathieu Jenny; Chérif Nouar. Pipe flow of shear-thinning fluids. Comptes Rendus. Mécanique, Volume 340 (2012) no. 8, pp. 602-618. doi : 10.1016/j.crme.2012.05.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.05.002/

[1] Á. Meseguer; L.N. Trefethen Linearized pipe flow to Reynolds number 107, J. Comput. Phys., Volume 186 (2003) no. 1, pp. 178-197

[2] M.T. Landahl A note on an algebraic growth instability of inviscid parallel shear flows, J. Fluid Mech., Volume 98 (1980) no. 2, pp. 243-251

[3] O.Y. Zikanov On the instability of pipe Poiseuille flow, Phys. Fluids, Volume 8 (1996) no. 11, pp. 2923-2932

[4] S.C. Reddy; P.J. Schmid; J.S. Baggett; D.S. Henningson On the stability of streamwise streaks and transition thresholds in plane channel flows, J. Fluid Mech., Volume 365 (1998), pp. 269-303

[5] D. Krasnov; M. Rossi; O. Zikanov; T. Boeck Optimal growth and transition to turbulence in channel flow with spanwise magnetic field, J. Fluid Mech., Volume 596 (2008), pp. 73-101

[6] F. Waleffe On a self-sustaining process in shear flows, Phys. Fluids, Volume 9 (1997) no. 4, pp. 883-900

[7] H. Faisst; B. Eckhardt Travelling waves in pipe flow, Phys. Rev. Lett., Volume 91 (2003) no. 22, p. 224502

[8] H. Wedin; R.R. Kerswell Exact coherent structures in pipe flow: Travelling wave solutions, J. Fluid Mech., Volume 508 (2004), pp. 333-371

[9] D. Biau; A. Bottaro An optimal path to transition in a duct, Proc. R. Soc. A, Volume 367 (2009), pp. 529-544

[10] F. Brand, J. Peixinho, C. Nouar, A quantitative investigation of the laminar-to-turbulent transition: Application to efficient mud cleaning, in: Proceedings of the SPE Annual Technical Conference and Exhibition, New Orleans, LA, United States, 2001.

[11] A.L. Mular; D.N. Halbe; D.J. Barrat Mineral Processing Plant Design, Practice and Control, SME, vols. 1–2, 2002

[12] M.P. Escudier; F. Presti; S. Smith Drag reduction in the turbulent pipe flow of polymers, J. Non-Newtonian Fluid Mech., Volume 81 (1998) no. 3, pp. 197-213

[13] A.A. Draad; G.D.C. Kuiken; F.T.M. Nieuwstadt Laminar–turbulent transition in pipe flow for Newtonian and non-Newtonian fluids, J. Fluid Mech., Volume 377 (1998), pp. 267-312

[14] M.P. Escudier; R.J. Poole; F. Presti; C. Dales; C. Nouar; C. Desaubry; L. Graham; L. Pullum Observations of asymmetrical flow behaviour in transitional pipe flow of yield-stress and other shear-thinning liquids, J. Non-Newtonian Fluid Mech., Volume 127 (2005) no. 2–3, pp. 143-155

[15] M.P. Escudier; S. Rosa; R.J. Poole Asymmetry in transitional pipe flow of drag-reducing polymer solutions, J. Non-Newtonian Fluid Mech., Volume 161 (2009) no. 1–3, pp. 19-29

[16] N. Roland; E. Plaut; C. Nouar Petrov–Galerkin computation of nonlinear waves in pipe flow of shear-thinning fluids: First theoretical evidences for a delayed transition, Comput. Fluids, Volume 39 (2010), pp. 1733-1743

[17] J. Peixinho; C. Nouar; C. Desaubry; B. Théron Laminar transitional and turbulent flow of yield stress fluid in a pipe, J. Non-Newtonian Fluid Mech., Volume 128 (2005) no. 2–3, pp. 172-184

[18] A. Esmael; C. Nouar Transitional flow of a yield-stress fluid in a pipe: Evidence of a robust coherent structure, Phys. Rev. E, Volume 77 (2008) no. 5, p. 057302

[19] B. Guzel; T. Burghelea; I.A. Frigaard; D.M. Martinez Observation of laminar–turbulent transition of a yield stress fluid in Hagen–Poiseuille flow, J. Fluid Mech., Volume 627 (2009), pp. 97-128

[20] R.B. Bird; R.C. Armstrong; O. Hassager Dynamics of Polymeric Liquids, vol. 1, Fluid Mechanics, Wiley Interscience, New York, 1987

[21] Á. Meseguer, L.N. Trefethen, A spectral Petrov–Galerkin formulation for pipe flow (ii): Nonlinear transitional stages, Oxford University, Numerical Analysis Group, Rep. 01/19, 2001.

[22] A. Leonard, A. Wray, A new numerical method for the simulation of three-dimensional flow in a pipe, in: Proceedings of the 8th International Conference on Numerical Methods in Fluid Dynamics, Aachen, West Germany, 1982.

[23] C. Canuto; M. Hussaini; A. Quarteroni; T. Zang Spectral Methods in Fluid Dynamics, Springer-Verlag, 1988

[24] P.J. Schmid; D.S. Henningson Stability and Transition in Shear Flows, Springer-Verlag, New York, 2001

[25] C. Nouar; A. Bottaro; J.P. Brancher Delaying transition to turbulence in channel flow: Revisiting the stability of shear-thinning fluids, J. Fluid Mech., Volume 592 (2007), pp. 177-194

[26] Á. Meseguer Streak breakdown instability in pipe Poiseuille flow, Phys. Fluids, Volume 15 (2003) no. 5, pp. 1203-1213

[27] F. Waleffe Transition in shear flows. Nonlinear normality versus non-normal linearity, Phys. Fluids, Volume 7 (1995) no. 12, pp. 3060-3066

[28] R. Govindarajan; S. Lʼvov; I. Procaccia; A. Sameen Stabilization of hydrodynamic flow by small viscosity variations, Phys. Rev. E, Volume 67 (2003), p. 026310 (11 pp)

[29] Á. Meseguer; F. Mellibovsky On a solenoidal Fourier–Chebyshev spectral method for stability analysis of the Hagen–Poiseuille flow, Appl. Numer. Math., Volume 57 (2007) no. 8, pp. 920-938

Cited by Sources:

Comments - Policy